Characterization of Genitourinary Lesions Using Diffusion-Weighted Imaging at 3T MRI

Farhood Saremi, M.D.; Helmuth Schultz-Haakh, Ph.D.*

1Professor of Radiology and Medicine, University of California, Irvine (UCI), USA
2Siemens Medical Solutions USA, Cypress, CA, USA

There is growing interest in the application of diffusion-weighted imaging (DWI) for the evaluation of lesions in the abdomen and pelvis [1–3]. DWI yields both qualitative and quantitative information that can be helpful in differentiating benign from malignant processes. The application of DWI is useful for tumor detection, tumor characterization, and in the evaluation of tumor recurrence or response to treatment [4–7]. DWI has been widely used in neuroimaging [8–11]. However, its application to body imaging was initially limited by the inherent motion sensitivity of the technique coupled with the presence of bulk physiologic motion in the abdomen. Routine extracranial application of DWI has become feasible following a series of technological advancements in MR imaging. These developments include faster imaging techniques with echo-planar imaging (EPI) and parallel imaging, high performance gradients, phased array multi-channel surface coils, and clinical use of higher magnetic field strengths [12–17]. Using new techniques, breathhold DWI sequences can be appended to existing imaging protocols without a significant increase in the total examination time. In this review, we describe our experience in using DWI for the characterization of genitourinary tract lesions as done on our MAGNETOM Trio, A Tim System with the Body Matrix coils.

Basic understanding of DWI technique

DWI sequences are designed to detect alterations in thermally-induced random (Brownian) motion of water molecules within tissues also known as diffusion [8, 9]. Diffusion effects are very small to the apparent diffusion coefficient (ADC). The optimal b-values for abdominal DWI have not yet been determined. DWI is typically performed using at least two b-values (within a range of 0 to 1000 s/mm²) to allow the calculation of the apparent diffusion coefficient (ADC).

As the b-value is increased, sensitivity to the effects of diffusion increases at the expense of longer TE and worsened signal-to-noise ratio (SNR) and image distortion.

Imaging protocol at our institution

Most of the images shown herein were obtained using a 3 tesla (T) magnet (MAGNETOM Trio, Siemens Healthcare, Erlangen, Germany). We used a breathhold single-shot spin echo EPI combined with parallel imaging and spectral fat suppression [11–14]. Our DWI protocol is shown in Table 1. In breathhold techniques, although the signal-to-noise ratio (SNR) is inferior compared with multiple averaging methods, the use of higher magnetic field strengths (e.g., 3 Tesla) and surface coils with more receiver channels (> 8) can compensate for poor SNR [17, 18]. We found spectral fat saturation technique more practical than STIR (short TI inversion recovery) for breathhold studies, since with STIR the acquisition time is longer and lesion visibility may be inferior compared with spectral fat saturation, especially in the center of the abdomen [19]. Parallel imaging is also essential for breathhold DW imaging. With parallel imaging, a shorter TE is possible which in fact increases the SNR and reduces susceptibility-induced image distortions [20–22] (Fig. 1). In our experience, syngo GRAPPA is more advantageous to mSENSE given the degree of off resonance and motion ghost artifacts associated with mSENSE [23]. It is reported that the DW image quality is superior at 3T compared to 1.5 T and that small lesions are better visualized [17]. 3T is particularly useful at higher b-values. However, with 3T we should expect larger susceptibility-induced image distortions and signal loss, and more motion-related artifacts [18]. Traditionally, most DWI studies have reported b-values of below 1000 s/mm². However, the use of even greater b-values may be beneficial. For example, high grade tumors may retain their bright signal with b-values above 1000 s/mm², whereas low grade tumors will lose their signal [23]. High b-values have also been used effectively to assess early recurrences of a tumor [24].

Signal of normal tissues in DWI

Abdominal DWI – Normal Appearance. ADC of the kidney is the highest among all abdominal organs, followed by the liver, pancreas, and spleen. As the b-value increases, the signal of normal kidney drops. The spleen remains bright and liver signal decreases mildly. Note that the signal of the left liver lobe is generally lower than the right lobe (which may be caused by transmitted cardiac pulsations). The center of the abdomen generally has no signal mostly due to susceptibility effect of gastrointestinal air. The bright signal in the ADC-map is stomach content, not a solid organ.

Table 1

<table>
<thead>
<tr>
<th>Procedure</th>
<th>B-value (s/mm²)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-map</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>b50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
related to susceptibility effects caused by the renal cortex is generally higher than the medulla [27]. At high b-values, the signals from normal tissue such as blood vessels, muscle, and bowel will be suppressed. The kidneys, adrenal gland, and gallbladder lose their signal gradually and lose nearly all signal at b = 1000 s/mm² and above. In contrast, some signals from normal tissue such as blood vessels, muscle, and bowel will be suppressed. The kidneys, adrenal gland, and gallbladder lose their signal gradually and lose nearly all signal at b = 1000 s/mm² and above. In contrast, some normal structures such as the spleen, prostate, testes, ovaries, endometrium, and spinal cord retain their bright signal at the higher b-values.

The renal cortex is generally higher than the medulla [27]. At high b-values, the signals from normal tissue such as blood vessels, muscle, and bowel will be suppressed. The kidneys, adrenal gland, and gallbladder lose their signal gradually and lose nearly all signal at b = 1000 s/mm² and above. In contrast, some normal structures such as the spleen, prostate, testes, ovaries, endometrium, and spinal cord retain their bright signal at the higher b-values.

Signal depletion in the center of the abdomen (pancreas) is common and likely related to susceptibility effects caused by gastrointestinal air. In the pelvis, the endometrium and endocervix show the highest signal values and appear bright on all DWI series. Junctional zone (inner layer of myometrium) and cervical body demonstrate the lowest ADC values. In other words, both appear low in signal on b = 50 s/mm² and bright on b = 1000 to b = 1500 s/mm². Normal myometrium is intermediate signal on all b-values.

Assessment of cystic lesions

The signal intensity of most simple cysts drops significantly on b = 500 s/mm² images and is lost completely on b = 1000-1500 s/mm² images. The presence of blood products and high proteinaceous material within a cyst may result in loss of signal on T2-weighted (T2w) and low b-value DWI images (compared with simple cysts) due to magnetic susceptibility effects of their contents. A similar effect can be seen with infected cysts and abscesses. ADC values of simple and complicated cysts are usually higher than solid lesions [28]. However, it should be noted that some overlap between the gross morphologic characteristics and ADC values of a complicated cyst and cystic renal cell carcinoma is not unusual. While needle biopsy is considered a relatively safe procedure, the incidence of complications is not negligible. In our experience with biopsy of cystic neoplasms, attention to findings provided by DWI can be very helpful in selecting biopsy sites to maximize the likelihood of positive results and may prevent an unnecessary repeat biopsy or surgery (Fig. 3).

Characterization of primary and metastatic tumors

DWI technique has been used successfully for the diagnosis and characterization of genitourinary lesions, including benign and malignant processes arising from the kidneys [29, 30], uterus [31], ovaries [32], and prostate [33], as well as for the detection of metastatic lesions in the liver, lymph nodes, and skeletal system [34–36]. Although ADC values have been demonstrated to differ significantly between benign and malignant lesions, it is not yet possible to confidently distinguish benign from malignant renal neoplasms on the basis of qualitative assessment of ADC measurements alone [37–40]. The degree of restriction to water diffusion in biologic tissue is inversely related to the tissuecellularity and the integrity of cell membranes [37–40]. As a consequence, diffusion is mostly restricted in highly cellular parts of a tumor because of a reduced extracellular space (Fig. 4). In contrast, diffusion is less restricted in hypervascular tumors and in tumors with glandular, necrotic, hemorrhagic, or cystic components (Fig. 3).

In most benign processes such as cysts or benign masses of low cellularity (e.g., typical cavernous hemangioma), the signal intensity on DWI decays with increasing b-values may indicate malignancy or viable hypercellular tissue (Fig. 4).

Although ADC values have been demonstrated to differ significantly between benign and malignant lesions, it is not possible to confidently distinguish benign from malignant renal neoplasms on the basis of qualitative assessment of ADC measurements alone [37–40]. The degree of restriction to water diffusion in biologic tissue is inversely related to the tissue cellularity and the integrity of cell membranes [37–40]. As a consequence, diffusion is mostly restricted in highly cellular parts of a tumor because of a reduced extracellular space (Fig. 4). In contrast, diffusion is less restricted in hypervascular tumors and in tumors with glandular, necrotic, hemorrhagic, or cystic components (Fig. 3). In most benign processes such as cysts or benign masses of low cellularity (e.g., typical cavernous hemangioma), the signal intensity on DWI decays with increasing b-value. This results in high signal intensities of such benign lesions on the ADC map [29]. In contrast, slower signal decay or even signal enhancement with increasing b-values may indicate malignancy or viable hypercellular tissue (Fig. 4). DWI and ADC-maps can be used to select optimal biopsy sites and to detect the presence of viable tumor on follow-up studies of patients after radiation or chemotherapy [41] (Fig. 3).

Pelvic masses

DWI performed with parallel imaging techniques has demonstrated potential as a method for differentiating benign from malignant pelvic lesions. Both endometrial cancer and normal endometrium appear hypointense on DW images [42]. However, the ADC values of high grade endometrial cancers are lower than those of normal endometrium and low grade cancers. “Cellular” leiomyomas, composed of compact smooth muscle cells with little or no collagen, tend to be brighter on T2-weighted and DW images.

The renal cortex is generally higher than the medulla [27]. At high b-values, the signals from normal tissue such as blood vessels, muscle, and bowel will be suppressed. The kidneys, adrenal gland, and gallbladder lose their signal gradually and lose nearly all signal at b = 1000 s/mm² and above. In contrast, some normal structures such as the spleen, prostate, testes, ovaries, endometrium, and spinal cord retain their bright signal at the higher b-values.

Signal depletion in the center of the abdomen (pancreas) is common and likely related to susceptibility effects caused by gastrointestinal air. In the pelvis, the endometrium and endocervix show the highest signal values and appear bright on all DWI series. Junctional zone (inner layer of myometrium) and cervical body demonstrate the lowest ADC values. In other words, both appear low in signal on b = 50 s/mm² and bright on b = 1000 to b = 1500 s/mm². Normal myometrium is intermediate signal on all b-values.

Assessment of cystic lesions

The signal intensity of most simple cysts drops significantly on b = 500 s/mm² images and is lost completely on b = 1000-1500 s/mm² images. The presence of blood products and high proteinaceous material within a cyst may result in loss of signal on T2-weighted (T2w) and low b-value DWI images (compared with simple cysts) due to magnetic susceptibility effects of their contents. A similar effect can be seen with infected cysts and abscesses. ADC values of simple and complicated cysts are usually higher than solid lesions [28]. However, it should be noted that some overlap between the gross morphologic characteristics and ADC values of a complicated cyst and cystic renal cell carcinoma is not unusual. While needle biopsy is considered a relatively safe procedure, the incidence of complications is not negligible. In our experience with biopsy of cystic neoplasms, attention to findings provided by DWI can be very helpful in selecting biopsy sites to maximize the likelihood of positive results and may prevent an unnecessary repeat biopsy or surgery (Fig. 3).

Characterization of primary and metastatic tumors

DWI technique has been used successfully for the diagnosis and characterization of genitourinary lesions, including benign and malignant processes arising from the kidneys [29, 30], uterus [31], ovaries [32], and prostate [33], as well as for the detection of metastatic lesions in the liver, lymph nodes, and skeletal system [34–36]. Although ADC values have been demonstrated to differ significantly between benign and malignant lesions, it is not yet possible to confidently distinguish benign from malignant renal neoplasms on the basis of qualitative assessment of ADC measurements alone [37–40]. The degree of restriction to water diffusion in biologic tissue is inversely related to the tissue cellularity and the integrity of cell membranes [37–40]. As a consequence, diffusion is mostly restricted in highly cellular parts of a tumor because of a reduced extracellular space (Fig. 4). In contrast, diffusion is less restricted in hypervascular tumors and in tumors with glandular, necrotic, hemorrhagic, or cystic components (Fig. 3). In most benign processes such as cysts or benign masses of low cellularity (e.g., typical cavernous hemangioma), the signal intensity on DWI decays with increasing b-value. This results in high signal intensities of such benign lesions on the ADC map [29]. In contrast, slower signal decay or even signal enhancement with increasing b-values may indicate malignancy or viable hypercellular tissue (Fig. 4). DWI and ADC-maps can be used to select optimal biopsy sites and to detect the presence of viable tumor on follow-up studies of patients after radiation or chemotherapy [41] (Fig. 3).

Pelvic masses

DWI performed with parallel imaging techniques has demonstrated potential as a method for differentiating benign from malignant pelvic lesions. Both endometrial cancer and normal endometrium appear hypointense on DW images [42]. However, the ADC values of high grade endometrial cancers are lower than those of normal endometrium and low grade cancers. “Cellular” leiomyomas, composed of compact smooth muscle cells with little or no collagen, tend to be brighter on T2-weighted and DW images.
It has been suggested in numerous reports that DWI together with T2w imaging can significantly improve differentiation of prostate cancers [33].

Conclusions

DW imaging in combination with 3T equipment is a robust method to facilitate the diagnosis of genitourinary lesions with equivocal signal characteristics on routine MRI. It is not only helpful in differentiating benign from malignant processes, but can also be used as a tool for assessing possible tumor recurrence and to evaluate response to radiation treatment or chemotherapy on follow up scans.

References

1. Namimoto T, Yamashita Y, Sumi S, Tang Y, Benign cellular sub-endometrial fibrosis in a 45-year-old patient (arrows). The mass demonstrated homogenous signal on DWI images with areas of mild, non-calcified diffusion on ADC map consistent with the diagnosis of cervical fibroma. The tumor appears enhancing on post contrast T1w image. Note: high signal intensity of normal endometrium on all b = 50 and b = 1500 s/mm2 values of the hyperintensity.

2. Le Bhain D, Breton E, Lallemant D, Grenier P, Cabanes L, Javelet IM. MR imaging of intra-
 vesical incipient movements: application to diffusion and perfusion in neurologic disorders.

3. Le Bhain D, Breton E, Lallemant D, Aubin M,
 Vignaud J, Javelet IM. Separation of diffusion
 and perfusion in intravesical incipient motion

 Diffusion-weighted MR imaging of acute stroke
 combination with T2-weighted and magnetic su-
 ceptibility-enhanced MRI imaging in cats. AJNR

5. Rothen-Hayl GR, Grant PR, Roberts TP. Diffusion
 imaging: theory and applications. Neuroimag-

6. Müller ML, Prasad P, Sower B, Nissenbaum MA,
 Rapaport VS, Miralbell R. Abdominal diffu-
 sion mapping with echo planar system of a
 whole-body echo planar system. Radiology

7. Cho EK, Gavrilovic JJ, Grenier P, Sommer FG.
 Single breath-hold diffusion-weighted imaging
 17: 387–392.

 MR imaging of the abdomen: echo-planar and
 diffusion-weighted imaging. J Magn Reson Imaging

 T2-weighted MR imaging of hepatic tumors: value
 of echo-planar imaging with diffusion sensitizing
 gradient. Comput Assist Tomogr 1998;

 ADC measurement of abdominal organs and le-
 sions using parallel imaging technique. AJR Am

 parison of 3.0 and 1.5 T diffusion imaging of the

12. Münz P, Sailer S, Trabert, F, van den Brink JS,
 Gavrielovic J, Schill H-H. Abdomen: diffusion-
 weighted MR imaging with pulse triggered
 single-shot sequences. Radiology 2002; 224:
 236–244.

13. Herneth AM, Guccione S, Bedwardi M. Apparent
 diffusion coefficient: a quantitative parameter
 for in vivo tumor characterization. Eur J Radiol

14. Charles-Edwards EM, deSouza NM. Diffusion-
 weighted magnetic resonance imaging and its
 application to cancer. Cancer Imaging.

15. Thoen HC, DeKayser J, Futter N. Extracranial applica-
 tions of diffusion-weighted magnetic resonance

16. Namimoto T, Awa K, Nakada T, Yanagita Y, Hira-
 i T, Yamashita Y. Role of diffusion-weighted
 imaging in the diagnosis of gynecological

 G. Predicting the histopathological grade of
 cervical glomus using high value MR DWI

18. Ishikawa T, Harada H, Hachisuy J, Naito T,
 Araki T. Diffusion-weighted MR imaging with
 single-shot echo-planar imaging in the upper
 abdomen: preliminary clinical experience in 61

19. Klicicke D, Yirik Y, Bayangolu S, Cimiki T,
 Aydin S. Non-breath-hold high b value di-
 ffusion-weighted MR with parallel imaging tech-
 nique: apparent diffusion coefficient in normal
 abdominal organs. Diagn Interv Radiol 2008; 14

 detection of response to radiation therapy in
 patients with breast malignancies using T2w
 and high b-value diffusion-weighted MRI.

 LH, Hricak H. Renal masses: characterization
 with diffusion-weighted MR imaging—prelimi-
 464.

 weighted MRI in the evaluation of renal neoplasms.
 Pern 2004; 47(2): 851–

23. Thoen HC, De Kayser J, Oyen RJ, Peeters RR.
 Diffusion-weighted MR imaging of kidneys in
 healthy volunteers and patients with parenchy-
 mal diseases: initial experience. Radiology 2000;
 219: 329–337.

 Hypointense uterine leiomyoma at T2-weight-
 ed MR imaging: differentiation with dynamic
 magnetic resonance imaging and tissue perfu-
 sion imaging. Radiology 1999; 217(2):

25. Barata AA, Megadath AD, Denewer AI, Moradiat A,
 Tahavi A, Nala R. Role of diffusion-weighted
 magnetic resonance imaging in differentiation
 between (diffusion-weighted MRI) and tissue
 370.

26. Tamai K, Koyama T, Saya E, et al. Diffusion-
 weighted MR imaging of uterine endometrial
 688.

 uterine leiomyoma at T2-weighted
 MR imaging: differentiation with dynamic magnetic
 resonance imaging and tissue perfusion

Contact
Farhood Sarem, M.D.
Professor of Radiology and Medicine
Chief, Cardiothoracic Division
Dept. of Radiological Sciences
University of California (UCI)
Medical Center
101 City Drive South
Irvine, CA 92698
USA
fsarem@uci.edu

Table 1: Diffusion-Weighted Imaging protocol on MAGNETOM Trio with software version syngo B15.

2D single shot spin echo EPI (EPI factor = 84)	b-values: 50, 400, 1000, and 1500 s/mm²	Body Matrix coils: 8-channel, BW: 2056 Hertzpixel
Fat suppression: normal Fat Sat	TR/TE: 2500–3000 s/mm²	/ 72 b-values for 50 and 2800, 3000-3000 s/mm²
78 b-values for b-values 400 and 1500 s/mm²	Total Imaging Time: 21–24 sec for each set	Matrix size: 84 x 128
Slice Thickness/Gap: 5/1.5 mm, 20 slices	Noise level: 0	Parallel imaging: syngo GRAPPA, acceleration factor = 2
Direction of diffusion gradients: 3-gradient factor = 2	Typical resolution, pixel size	Typical FOV with rectangular FOV

Abdomen / Pelvis Clinical