PET/CT delineation of implantation metastases along the surgery corridor after abdominal surgery in a patient with NSCLC

By Irene Greil, MD
Data courtesy of Klinikum Nuremberg, Nuremberg, Germany.

History

A 57-year-old male patient was hospitalized for a severe gastroenteritis. The diagnostic workup revealed a suspicious pulmonary lesion in the right upper lobe, which on biopsy was confirmed to be a non-small cell lung carcinoma (NSCLC) in the upper lobe.

The initial PET/CT study (Figure 1) showed a known singular pulmonary nodule (SPN) with a SUV\textsubscript{max} of 18.8. In addition, a second Fludeoxyglucose F 18 (18F FDG)-avid lesion was depicted in the left adrenal gland with a SUV\textsubscript{max} of 10.8. To exclude an additional secondary malignancy, the patient underwent an adrenalectomy on the left side. Histology confirmed the suspicion of an adrenal gland metastasis of the NSCLC. The adrenalectomy was initially scheduled as a minimally invasive procedure, but it needed to be extended interoperatively to a conventional adrenal resection with a left-sided incision. The primary lung tumor was removed by upper lobar resection with adjacent lymphadenectomy. An adjuvant chemotherapy regimen was also started. Three months later, the patient presented for follow up with swelling close to the incision site of the adrenalectomy. According to the patient, these nodular lesions appeared almost immediately following surgery and had progressively increased in size. A PET/CT scan was performed to better characterize those lesions.

Findings

The second 18F FDG PET/CT study (Figure 2), performed 4 months after adrenalectomy and 3 months after pulmonary resection, revealed multiple, 18F FDG-avid foci up to 2 cm in diameter in the region of the left adrenal gland adjacent to the diaphragm with subcutaneous spread in the dorsal and dorso-caudal direction.

Additional lesions were located next to the descending colon, as well as in the muscles and subcutaneous tissue of the back. The SUV\textsubscript{max} of those masses was significantly elevated (SUV\textsubscript{max} 24), suggesting malignancy.

A follow-up PET/CT scan (Figure 3) 6 weeks after termination of the chemotherapy showed only minimal treatment response in few of the metastatic foci, especially in the subcutaneous nodules. However, lesions in the adrenal bed showed progression, along with new lesions in perirenal space and in the caudal pole of the left kidney, which together suggest therapy failure.
Fludeoxyglucose F 18 5-10mCi as an IV injection
Indications and Usage

Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:
• Oncology: For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
• Cardiology: For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
• Neurology: For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.

Important Safety Information

• Radiation Risks: Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker.
• Blood Glucose Abnormalities: In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.
• Adverse Reactions: Hypersensitivity reactions with pruritus, edema and rash have been reported; have emergency resuscitation equipment and personnel immediately available. Full prescribing information for Fludeoxyglucose F 18 Injection can be found at the conclusion of this publication.

Dosage Forms and Strengths

Multiple-dose 30 mL and 50 mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/mL) of Fludeoxyglucose F 18 injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/w ethanol as a stabilizer (approximately 15 to 50 mL volume) for intravenous administration. Fludeoxyglucose F 18 injection is manufactured by Siemens’ PETNET Solutions, 810 Innovation Drive, Knoxville, TN 39732

Conclusion

The nodular 18F FDG-avid lesions correlated exactly with the surgery corridor of the adrenalectomy, indicating the presence of multiple, intraoperatively implanted metastases of the NSCLC, which was confirmed histologically. The more superficially located tumors could be removed surgically. In addition, the patient underwent external radiation and combination chemotherapy.

Examination protocol

<table>
<thead>
<tr>
<th>Scan dose</th>
<th>10 mCi (370 MBq) 18F FDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>2 min/bed</td>
</tr>
</tbody>
</table>

* Important safety information on Fludeoxyglucose F 18 injection can be found on page 2. The full prescribing information can be found on pages 3-5.
Fludeoxyglucose F 18 Injection, USP

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use Fludeoxyglucose F 18 Injection safely and effectively. See full prescribing information for Fludeoxyglucose F 18 Injection. Fludeoxyglucose F 18 Injection, USP. For intravenous use. Initial U.S. Approval: 2005

1 INDICATIONS AND USAGE

1.1 Oncology

For the identification of regions of abnormal glucose metabolism associated with foci of equivocal lesions.

1.2 Cardiology

For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.

1.3 Neurology

For the identification of regions of abnormal glucose metabolism associated with foci of equivocal lesions.

2 DOSAGE AND ADMINISTRATION

Fludeoxyglucose F 18 Injection emits radiation. Use procedures to minimize radiation exposure. See Warnings and Precautions (5.2).

2.1 Recommended Dose for Adults

Within the oncology, cardiology and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined.

2.2 Recommended Dose for Pediatric Patients

Within the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined.

2.3 Patient Preparation

• To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.

• Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.

• Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.

• Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests (see Warnings and Precautions (5.2)). Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug’s injection.

• In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 grams) prior to the drug’s injection facilitates localization of cardiac ischemia.

2.4 Radiation Dosimetry

The estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the International Commission on Radiological Protection for Fludeoxyglucose F 18 F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.

Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection

<table>
<thead>
<tr>
<th>Organ</th>
<th>Newborn</th>
<th>1-year old</th>
<th>5-year old</th>
<th>10-year old</th>
<th>15-year old</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder wall</td>
<td>43.3</td>
<td>1.7</td>
<td>0.93</td>
<td>0.60</td>
<td>0.40</td>
<td>0.32</td>
</tr>
<tr>
<td>Heart wall</td>
<td>2.4</td>
<td>1.2</td>
<td>0.70</td>
<td>0.44</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2.2</td>
<td>0.68</td>
<td>0.33</td>
<td>0.25</td>
<td>0.13</td>
<td>0.096</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.2</td>
<td>0.84</td>
<td>0.46</td>
<td>0.29</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.96</td>
<td>0.38</td>
<td>0.20</td>
<td>0.13</td>
<td>0.092</td>
<td>0.064</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.81</td>
<td>0.34</td>
<td>0.19</td>
<td>0.13</td>
<td>0.089</td>
<td>0.074</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.80</td>
<td>0.8</td>
<td>0.19</td>
<td>0.11</td>
<td>0.058</td>
<td>0.053</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.79</td>
<td>0.35</td>
<td>0.19</td>
<td>0.12</td>
<td>0.076</td>
<td>0.062</td>
</tr>
<tr>
<td>Lung wall *</td>
<td>0.69</td>
<td>0.28</td>
<td>0.15</td>
<td>0.097</td>
<td>0.060</td>
<td>0.051</td>
</tr>
<tr>
<td>Liver</td>
<td>0.69</td>
<td>0.31</td>
<td>0.17</td>
<td>0.11</td>
<td>0.076</td>
<td>0.058</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>0.69</td>
<td>0.26</td>
<td>0.14</td>
<td>0.093</td>
<td>0.059</td>
<td>0.049</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.68</td>
<td>0.29</td>
<td>0.15</td>
<td>0.096</td>
<td>0.060</td>
<td>0.047</td>
</tr>
<tr>
<td>Stomach wall **</td>
<td>0.67</td>
<td>0.27</td>
<td>0.15</td>
<td>0.090</td>
<td>0.057</td>
<td>0.046</td>
</tr>
<tr>
<td>Adrenals</td>
<td>0.65</td>
<td>0.28</td>
<td>0.15</td>
<td>0.095</td>
<td>0.061</td>
<td>0.048</td>
</tr>
<tr>
<td>Testes</td>
<td>0.64</td>
<td>0.27</td>
<td>0.14</td>
<td>0.085</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.62</td>
<td>0.26</td>
<td>0.14</td>
<td>0.089</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.61</td>
<td>0.26</td>
<td>0.14</td>
<td>0.086</td>
<td>0.056</td>
<td>0.044</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.61</td>
<td>0.26</td>
<td>0.13</td>
<td>0.080</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.58</td>
<td>0.25</td>
<td>0.13</td>
<td>0.078</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.57</td>
<td>0.24</td>
<td>0.12</td>
<td>0.079</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>Breast</td>
<td>0.54</td>
<td>0.22</td>
<td>0.11</td>
<td>0.068</td>
<td>0.043</td>
<td>0.034</td>
</tr>
<tr>
<td>Skin</td>
<td>0.49</td>
<td>0.20</td>
<td>0.10</td>
<td>0.060</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Brain</td>
<td>0.29</td>
<td>0.13</td>
<td>0.09</td>
<td>0.078</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td>Other tissues</td>
<td>0.59</td>
<td>0.25</td>
<td>0.13</td>
<td>0.083</td>
<td>0.052</td>
<td>0.042</td>
</tr>
</tbody>
</table>

* MIRODOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al. and Jones et al.

** The dynamic bladder model with an input data decay factor of 1.5 hours was used. *ULI = lower urinary intestine; **ULI = upper urinary intestine.
4. CONTRAINDICATIONS

- Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.

5. PRECAUTIONS

- Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS.

6. ADVERSE REACTIONS

- Hypersensitivity reactions with pruritus, edema, and rash have been reported in the oncology and neurology setting, suboptimal imaging may occur in patients with in-adequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.

7. DRUG INTERACTIONS

- The possibility of interactions of Fludeoxyglucose F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8. USE IN SPECIFIC POPULATIONS

- Pregnancy
 - Category C
 - Animal reproduction studies have not been conducted with Fludeoxyglucose F 18 Injection. It is not known whether Fludeoxyglucose F 18 Injection is excreted in human milk. Consider alternative diagnostic tests in a pregnant woman; administer Fludeoxyglucose F 18 Injection only if clearly needed.

9. NURSING MOTHERS

- It is unknown whether Fludeoxyglucose F 18 Injection is excreted in human milk. Consider alternative diagnostic tests in women who are breast-feeding. Use alternatives to breast-feeding (e.g., stored breast milk or infant formula) for at least 10 half-lives of radioactive decay, if Fludeoxyglucose F 18 Injection is administered to a woman who is breast-feeding.

10. PEDICATRIC USE

- The safety and effectiveness of Fludeoxyglucose F 18 Injection in pediatric patients with epilepsy is established on the basis of studies in adult and pediatric patients. In pediatric patients with epilepsy, the recommended dose is 2.6 μCi. The optimal dose adjustment on the basis of body size or weight has not been determined.

11. DESCRIPTION

11.1 Chemical Characteristics

- Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C6H1118FO5 with a molecular weight of 181.26, and has the following chemical structure:

![Chemical Structure](image)

For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.

12. CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

- Fludeoxyglucose F 18 is a glucose analog that concentrates in cells that rely upon glucose as an energy source, or in cells whose dependence on glucose increases under pathophysiologic conditions. Fludeoxyglucose F 18 is transported through the cell membrane by facilitated glucose transporter proteins and is phosphorylated within the cell. The phosphorylated glucose-6-phosphate is converted into glycogen.

For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.
14.3 Pharmacokinetics

Distribution: In four healthy male volunteers, receiving an intravenous administration of 30 seconds radioactivity, the arterial blood level profile for Fludeoxyglucose F 18 decayed trisexponentially. The effective half-life ranges of the three phases were 0.2 to 0.5 minutes, 10 to 13 minutes with a mean and standard deviation (STD) of 11.6 (±) 1.1 min, and 80 to 95 minutes with a mean and STD of 88 (±) 4 min.

Plasma protein binding: The plasma protein binding of Fludeoxyglucose F 18 has not been studied.

Metabolism: Fludeoxyglucose F 18 is transported into cells and phosphorylated to [18F]-FDG-6-phosphate. Fludeoxyglucose F 18 Injection may contain several impurities (e.g., 2-deoxy-2-chloro-D-glucose (CIDG)). Biodistribution and metabolism of CIDG are presumed to be similar to Fludeoxyglucose F 18 and would be expected to result in intracellular formation of 2-deoxy-2-chloro-6-phospho-D-glucose (CDG-6-phosphate) and 2-deoxy-2-chloro-6-phospho-D-mannose (CDM-6-phosphate). The phosphorylated deoxyglucose compounds are de-phosphorylated and the resulting compounds (FDG, FDM, CIDG, and CDM) presumably leave cells by passive diffusion. Fludeoxyglucose F 18 and related compounds are cleared from non-cardiac tissues within 3 to 24 hours after administration. Clearance from the cardiac tissue may require more than 96 hours. Fludeoxyglucose F 18 that is not involved in glucose metabolism in any tissue is then excreted in the urine.

Elimination: Fludeoxyglucose F 18 is cleared from most tissues within 24 hours and can be eliminated from the body untreated in the urine. Three elimination phases have been identified in the reviewed literature. Within 33 minutes, a mean of 3.9% of the administered radioactive dose was measured in the urine. The amount of radiation exposure of the urinary bladder at two hours post-administration suggests that 20.6% (mean) of the radioactive dose was present in the bladder.

Special Populations:
The pharmacokinetics of Fludeoxyglucose F 18 Injection have not been studied in renal-impaired, hepatically impaired or pediatric patients. Fludeoxyglucose F 18 is eliminated through the renal system. Avoid excessive radiation exposure to this organ system and adjacent tissues.

The effects of fasting, varying blood sugar levels, conditions of glucose intolerance, and diabetes mellitus on Fludeoxyglucose F 18 distribution in humans have not been ascertained [see Warnings and Precautions (5.2)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal studies have not been performed to evaluate the Fludeoxyglucose F 18 Injection carcinogenic potential, mutagenic potential or effects on fertility.

14 CLINICAL STUDIES

14.1 Oncology

The efficacy of Fludeoxyglucose F 18 Injection in position emission tomography cancer imaging was demonstrated in 16 independent studies. These studies prospectively evaluated the use of Fludeoxyglucose F 18 in patients with suspected or known malignancies, including non-small cell lung cancer, colorectal, pancreatic, breast, thyroid, melanoma, Hodgkin's and non-Hodgkin's lymphoma, and various types of metastatic cancers to lung, liver, bone, and axillary nodes. All these studies had at least 50 patients and used pathology as a standard of truth. The Fludeoxyglucose F 18 Injection does in the studies ranged from 200 MBq to 740 MBq with a median and mean dose of 370 MBq. In these studies, the diagnostic performance of Fludeoxyglucose F 18 Injection varied with the type of cancer, size of cancer, and other clinical conditions. False negative and false positive scans were observed. Negative Fludeoxyglucose F 18 Injection PET scans do not exclude malignancy. The FLUDEOXYGLUCOSE F 18 Injection PET scans can not replace pathology to establish a diagnosis of cancer. Non-malignant conditions such as fungal infections, inflammatory processes and benign tumors have patterns of increased glucose metabolism that may give rise to false-positive scans. The efficacy of Fludeoxyglucose F 18 Injection PET imaging in cancer screening was not studied.

14.2 Cardiology

The efficacy of Fludeoxyglucose F 18 Injection for cardiac use was demonstrated in ten independent, prospective studies of patients with coronary artery disease and chronic left ventricular systolic dysfunction who were scheduled to undergo coronary revascularization. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection (24 to 370 MBq, 2 to 10 min) and perfusion imaging with other diagnostic radiopharmaceuticals. Doses of Fludeoxyglucose F 18 Injection ranged from 74 to 370 MBq (2 to 10 min). Segmental, left ventricular, wall-motion assessments of asynergic areas made before revascularization were compared in a blinded manner to assessments made after successful revascularization to identify myocardial segments with functional recovery. Left ventricular myocardial segments were predicted to have reversible loss of systolic function if they showed Fludeoxyglucose F 18 accumulation and reduced perfusion (i.e., flow-metabolism mismatch). Conversely, myocardial segments were predicted to have irreversible loss of systolic function if they showed reductions in both Fludeoxyglucose F 18 accumulation and perfusion (i.e., matched defects). Findings of flow-metabolism mismatch in a myocardial segment may suggest that successful revascularization will restore myocardial function in that segment. However, false-positive tests occur regularly, and the decision to have a patient undergo revascularization should not be based on PET findings alone. Similarly, findings of a matched defect in a myocardial segment suggest that myocardial segment function will not recover in that segment, even if it is successfully revascularized. However, false-negative tests occur regularly, and the decision to recommend against coronary revascularization, or to recommend a different type of intervention, should not be based on PET findings alone. The reversibility of segmental dysfunction as predicted with Fludeoxyglucose F 18 PET imaging depends on successful coronary revascularization. Therefore, in patients with a low likelihood of successful revascularization, the predictive usefulness of PET imaging with Fludeoxyglucose F 18 Injection is more limited.

14.3 Neurology

In a prospective, open label trial, Fludeoxyglucose F 18 Injection was evaluated in 86 patients with epilepsy. Each patient received a dose of Fludeoxyglucose F 18 Injection in the range of 185 to 370 MBq (5 to 10 mCi). The mean age was 16.4 years (range: 4 to 58 years) of these, 42 patients were less than 12 years and 16 patients were less than 2 years old. Patients had a known diagnosis of complex partial epilepsy and were under evaluation for surgical treatment of their seizure disorder. Seizure foci had been previously identified on ictal EEGs and sphenoidal EEGs. Fludeoxyglucose F 18 Injection PET imaging confirmed previous diagnostic findings in 16% (14/87) of the patients; in 34% (30/87) of the patients, Fludeoxyglucose F 18 Injection PET images provided new findings. In 32% (27/87), imaging with Fludeoxyglucose F 18 Injection was inconclusive. The impact of these imaging findings on clinical outcomes is not known. Several other studies comparing imaging with Fludeoxyglucose F 18 Injection results to subphenoidal EEG, MRI and/or surgical findings supported the concept that the degree of hypometabolism corresponds to areas of confirmed epileptogenic foci. The safety and effectiveness of Fludeoxyglucose F 18 Injection to distinguish idiopathic epileptogenic foci from tumors or other brain lesions that may cause seizures have not been established.

15 REFERENCES

4. ICRP Publication 53, Volume 18, No. 1, 1987, pages 75-76.

16 HOW SUPPLIED/STORAGE AND HANDLING

Fludeoxyglucose F 18 Injection is supplied in a multi-dose, capped 30 mL and 50 mL glass vial containing between 0.740 to 7.400 Bq/mL (20 to 200 mCi/mL), of no carrier added 2-deoxy-2-[F-18] fluoro-D-glucose, at end of synthesis, in approximately 15 to 50 mL. The contents of each vial are sterile, pyrogen-free and preservative-free.

NDC 40028-511-30; 40028-511-50

Receipt, transfer, handling, possession, or use of this product is subject to the radioactive material and licensing requirements of the U.S. Nuclear Regulatory Commission, Agreement States or Licensing States as appropriate.

Store the Fludeoxyglucose F 18 Injection vial upright in a light shielded container at 25°C (77°F), excursions permitted to 15-30°C (59-86°F).

Store and dispose of Fludeoxyglucose F 18 Injection in accordance with the regulations and a general license, or its equivalent, of an Agreement State or a Licensing State.

The expiration date and time are provided on the container label. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS time.

17 PATIENT COUNSELING INFORMATION

Instruct patients in procedures that increase renal clearance of radioactivity. Encourage patients to:

- drink water or other fluids (as tolerated) in the 4 hours before their PET study.
- void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.

Manufactured by: PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932

Distributed by: PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932

PETNET Solutions
Legal information: On account of certain regional limitations of sales rights and service availability, we cannot guarantee that all products included in this brochure are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and is subject to change without prior notice. Some/all of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features, which do not always have to be present in individual cases.

Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice. Please contact your local Siemens sales representative for the most current information.

Note: Any technical data contained in this document may vary within defined tolerances. Original images always lose a certain amount of detail when reproduced.

“Siemens Healthineers” is considered a brand name. Its use is not intended to represent the legal entity to which this product is registered.

Please contact your local Siemens organization for further details.

PETNET Solutions Inc. is a Siemens Healthineers company.