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Abstract
Imaging used for target delineation and treatment  
planning plays a critical role for treatment success in  
radiotherapy. Due to its superior soft tissue contrast, MRI  
is essential for many radiotherapy treatment cases. In the 
present article, we summarize and discuss the role of MRI 
for the most relevant radiotherapy treatment indications.

Introduction
Radiotherapy has different demands on MR imaging than 
diagnostic radiology. In routine radiologic imaging, de-
pending on the site and patient history, imaging primarily 
needs to be able to detect previously unknown pathologies 
and provide information on differential diagnosis while the 
accurate depiction of the true three-dimensional extension 
of tumors is of less importance. In contrast, MRI for radio-
therapy planning primarily needs to accurately and clearly 
depict the tumor perimeter in three-dimensional space for 
precise gross tumor volume (GTV) delineation.

Different radiotherapy treatment indications and sites 
also may have specific demands on MR sequences  
and tissue contrasts. Frequently target delineation for  
treatment planning is based on contrast-enhanced T1  
sequences. However, usually multiple tissue contrasts and 
sequences are integrated when creating target volumes  
for radiotherapy.

Magnetic resonance imaging is routinely required for 
treatment planning in many indications in radio-oncology 
[1]. In the present article we summarize the role of MRI for 
the most relevant radiotherapy treatment indications and 
discuss the varying specific requirements each treatment 
site puts on MR imaging.

Intracranial radiotherapy
One of the most important areas for MR imaging in radio-
therapy are intracranial treatment indications. Intracranial 
targets, especially when small in size or low-enhancing, 
usually are not visualized on CT at all, rendering MR  
imaging critical for treatment planning. At the same  
time intracranial diseases are one of the most important  
indications for radiotherapy. Irradiation can be delivered 
very accurately to intracranial targets, as the skull  
can be positioned with submillimeter accuracy using  
thermoplastic mask immobilization and X-ray-based  
imaging during treatment delivery [2]. The high overall  
accuracy of intracranial radiotherapy enables precise target 
volumes and high radiotherapy doses with minimal impair-
ment of normal tissues. This leads to high treatment  
efficacy and low or minimal side effects in a variety  
of malignant intracranial tumors like brain metastases,  
benign tumors like vestibular schwannoma and functional 
disorders like trigeminal neuralgia. In these diseases  
the requirements for geometric accuracy in MR imaging  
are particularly demanding, as commonly used margins  
of ≤ 1 mm do not account for additional MR imaging- 
related uncertainties [2, 3].

Another group of frequent intracranial treatment  
indications are gliomas, which are more difficult to  
treat as they are usually larger in size and show diffuse  
infiltration in the surrounding brain tissue, thus rendering 
precise delivery of high irradiation doses to all tumor  
cells is impossible without impairing normal brain tissue.  
In these tumors improved MR imaging could help with  
precise tumor delineation or potentially identifying  
candidate regions for dose-escalation and -sparing.

The concepts and information presented in this paper are based on research and are not commercially available.
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Brain metastases
When being referred to treatment today, brain metastases 
are usually small (mostly < 1 cm diameter) solitary or  
multiple spherical lesions, which are best visualized in 
post-contrast T1 sequences. They show no or minimal  
infiltration into the surrounding brain tissue [4] and thus 
are usually irradiated with an isotropic uncertainty margin 
of less than 2 mm [2]. Due to the small size high-resolution 
isotropic 3D sequences are usually best-suited as they  
enable accurate multiplanar reconstruction and minimize 
partial volume effects [5, 6].

Inversion-recovery gradient echo sequences (IR-GRE) 
like the T1-MPRAGE [7], have been the most commonly 
used 3D MR imaging technique for brain tumors and have 
been included in the standardized Brain Tumor Imaging 
Protocol (BTIP) [8, 9]. However, multiple sources suggest 
that a 3D-turbo-spin-echo (TSE) T1-SPACE could be  
superior to the frequently used T1-MPRAGE gradient-echo 
sequence for intracranial radiotherapy target volume  
delineation [8, 10-12]. While T1-SPACE provides less  
contrast between grey and white matter [8], this is  
negligible in most cases for radiotherapy treatment  
planning and may in fact even help with the delineation  
of intracranial metastases, as does the suppression of  
vessels in the T1-SPACE [12]. Conversely, T1-MPRAGE  
suffers from a known reduced enhancement if low contrast 
agent uptake is present, which could lead to underestima-
tion of lesion boundaries [8, 13] (Fig. 1).

Additional important requirements for radiotherapy in 
brain metastases are the minimization of distortions from 
gradient-non-linearities and susceptibility effect-induced 
distortions [14, 15].

Due to the malignant nature of brain metastases,  
they have a high growth rate [16, 17] and are usually  
surrounded by perifocal edema [18], which may change  
in configuration spontaneously or when corticosteroid  
dosage is modified (Fig. 2) [19]. Salkeld et al. found  
profound changes with imaging intervals ≤ 7 days before 
radiosurgery. Change in management was required for 
41% of patients with interval ≤ 7 days and even for 78%  
if the delay exceeded 7 days. The most frequent reason  
for replanning was an increase in tumor or resection cavity 
size [17, 20]. Therefore, the interval between imaging and 
treatment delivery should be as short as possible. While 
same-day imaging would be optimal, in our university 
medical center in Erlangen we currently have established 
the requirement that the interval between imaging and 
treatment delivery must not exceed 5 days. 

In addition to pretreatment changes, brain metastases 
may also undergo profound changes during radiotherapy 
due to transient swelling, changes in perifocal edema  
and treatment response (Fig. 2). Hessen et al. in a recent 
study evaluated the significance of a repeated MRI scan  
in the fractionated stereotactic radiotherapy of 18 brain  
metastases and 20 resection cavities. For cases with  
in-situ brain metastases, reductions in coverage of up  

1   Examples of sequences  
used for target delineation.  
 
(1A) T2 SPACE FLAIR (1 mm slice 
thickness – bottom) vs. conventional 
T2 FLAIR (5 mm slice thickness – top) 
in a patient with glioma.  
 
(1B) T1 SPACE 3D TSE sequence 
(right) vs. T1 MPRAGE IR GE sequence 
(left). Some metastases are only very 
faintly visible in the T1 MPRAGE 
(arrows). Note also: Suppression of 
vessels and less contrast between 
gray and white matter in the 
T1-SPACE.  
 
(1C) Isotropic T2 SPACE sequence  
in prostate cancer (left) with high- 
resolution sagittal reconstruction 
(right). Left inset: ADC map from 
diffusion-weighted imaging with 
reduced volume excitation (ZOOMit) 
showing focal diffusion restriction in 
the top lobe of the prostate (arrow). 
Right inset: Synthetic CT of the pelvis 
showing proper detection of air 
inside rectal balloon.
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to 34.8% were found due to changes during fractionated  
radiotherapy [21]. 

This accumulating evidence for rapid tumor growth 
and accompanying anatomic changes in brain metastases 
might mean that optimal MR imaging for treatment  
planning needs to be performed daily. Considering the 
trend that more and more brain metastases are treated 
with stereotactic radiotherapy alone and life expectancies 
increase due to advances in immunotherapy and targeted 
agents [22], alternatives to contrast-enhanced T1  
sequences might become necessary to reduce exposure  
to gadolinium-based contrast agents. Promising results  
recently have been achieved with deep learning-based  
prediction of synthetic contrast-enhanced T1 sequences 
from non-enhanced MR sequences, which could reduce  
cumulative gadolinium doses patients need to receive for 
radiotherapy [23].

There is a real potential for improving clinical out-
comes with optimized MR imaging in brain metastases: In  
prospective clinical trials, local control rates of around 70% 
at 1 year post-radiotherapy have been consistently shown 

for stereotactic radiotherapy alone, while control rates for 
stereotactic radiotherapy with adjuvant whole brain radio-
therapy measured at around 90% [24]. As increasing radio-
therapy dose due to additional whole-brain radiotherapy  
is a less likely explanation, marginal miss in stereotactic  
radiotherapy because of suboptimal imaging could account 
for a substantial part of the observed difference in local  
efficacy.

Gliomas
While MRI was introduced many decades ago for target  
volume delineation in gliomas [25–28], these tumors are 
more difficult to treat and improvement in outcomes for 
the most part has stalled in recent years. Target delineation 
is more challenging in gliomas than in brain metastases. 
High-grade gliomas usually show strong contrast- 
enhancement, which is the main target for radiotherapy. 
However, while the surrounding T2 hyperintensity in  
brain metastases merely represents vasogenic edema and  
microscopic infiltration is minimal in brain metastases [4], 

13 Days

0

20

40

100

80

60

M
et

as
ta

se
s 

en
co

m
pa

ss
ed

 
by

 P
TV

 (%
)

14 28 42 56 70
Days since MRI

3 mm PTV margin
2 mm PTV margin
1 mm PTV margin

2B

Planning MRI Repeated MRI 
during treatment

2C

2   Importance of the time interval between MR imaging and treatment delivery in brain metastases. (2A) Brain metastasis increasing  
to 281% in volume in an interval of only 13 days. Orange: planning target volume (PTV) definition based on initial MRI would have missed 
31.5% of GTV volume. (2B) Kaplan-Meier plot showing the diminishing fraction of metastases encompassed by the initial PTV volume over 
time for margin definitions of 1–3 mm (preliminary analysis of 85 metastases). (2C) Repeated planning MRI during fractionated stereotactic 
radiotherapy in a patient with brainstem metastasis. Note: Substantial reduction in tumor volume and in accompanying edema results in 
profound shifting of the brainstem. The radiotherapy plan was adapted based on the repeated planning MRI.
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T2 abnormalities may constitute an important or the only 
visible tumor portion in low-grade gliomas or IDH-mutant 
glioblastomas [29–31].

Additionally, aside from imaging changes, extensive 
microscopic tumor cell infiltration into the adjacent  
brain is present in gliomas with microscopic infiltration 
even expected to extent into the contralateral brain  
hemisphere [32].

To make matters worse, contrast-enhancing tumor 
needs to be differentiated from treatment effects due to 
prior surgery and radiation as well as pseudo-progression. 

For visualization of contrast-enhancing tumor, 3D  
contrast-enhanced T1-sequences like the T1-MPRAGE and  
T1-SPACE are usually used. In stark contrast to the millime-
ter margins employed in stereotactic radiotherapy for brain 
metastases, current guidelines recommend giving an  
isotropic margin of 2 cm around any contrast-enhancing 
tumor [29, 33]. Geometric accuracy therefore usually is 
less critical in radiotherapy for gliomas than in other intra-
cranial treatment indications. The non-contrast enhancing 
tumor usually is delineated in 2D T2-FLAIR sequences with 
3–5 mm slice thickness [34]. While current guidelines  
also recommend a margin of around 2 cm for T2-FLAIR  
hyperintensities in lower-grade gliomas, recommendations 
are conflicting in primary, IDH-wildtype, glioblastoma with 
the ESTRO recommending not considering the T2-FLAIR  
hyperintensity at all [29, 33].

As discussed above, thick slice 2D FLAIR sequences 
could lead to unnecessarily high treatment volumes  
in cases of small tumor volumes. Coarse depiction of  
non-enhancing tumor parts in conventional T2-FLAIR  
sequences should be of particular relevance in cases  
of stereotactic reirradiation, where much smaller margins  
are used.

We currently evaluate high-resolution 3D T2-SPACE 
FLAIR sequences in patients with malignant low-grade  
gliomas in comparison to conventional T2-FLAIR imaging. 
In our preliminary experience a 3D T2-SPACE FLAIR  
sequence allows for more precise delineation of non-en-
hancing tumor volumes with high-resolution multiplanar 
reconstruction being particularly beneficial to target  
delineation in radiotherapy (Fig. 1).

Moreover, RT-optimized perfusion and diffusion  
sequences could help with differentiating true tumor from 
other reasons for contrast-enhancement and T2-FLAIR  
hyperintensity. We are currently evaluating an EPI with  
reduced volume excitation (ZOOMit) to help with target 
volume delineation in gliomas.

Benign tumors and functional disorders
Vestibular schwannomas are an important benign tumor, 
frequently treated with stereotactic radiotherapy. In  
these cerebellopontine neoplasms excellent long-term  

control and functional outcome is achieved with local  
radiotherapy [35]. As vestibular schwannomas show  
strong contrast enhancement, 3D T1-sequences like the 
T1-MPRAGE are frequently used for delineation in radio-
therapy treatment planning. In addition, high-resolution 
3D-CISS sequences depict tumors and surrounding  
cerebrospinal fluid with high contrast and are important 
for delineation of adjacent cranial nerves. They also allow 
high-resolution segmentation of inner ear structures which 
may reduce cochlea doses and help with preservation of 
hearing. Post-radiotherapy these tumors frequently show 
transient enlargement before regressing in size, which 
sometimes is challenging to differentiate from treatment 
failure [35, 36].

Another benign brain tumor frequently treated with  
radiotherapy is meningioma, in which contouring mainly 
relies on contrast-enhanced T1 3D sequences like the  
T1-MPRAGE. In delineation of meningiomas for stereotactic 
radiotherapy the accurate estimation of the amount  
of dural extent (“Dural tail”) is frequently challenging  
to determine and contouring of meningioma cases is  
frequently very time-consuming because of complex geo-
metric tumor configurations and imaging changes due to  
previous surgery.

Trigeminal neuralgia is a functional disorder that may 
be treated with stereotactic radiosurgery in patients refrac-
tory to analgesics and surgical decompression. A very large 
radiosurgery dose (70–90 Gy) is given to the trigeminal 
root entry zone or cisternal portion of the nerve making 
accurate high-resolution MRI for treatment planning cru-
cial. We usually employ a high-resolution 3D CISS, which 
enables clear distinction of the trigeminal and surrounding 
cranial nerves [37].

Head and neck cancer 
Radiotherapy of the head and neck region is a highly  
effective curative treatment for wide variety of tumors 
ranging from malignant entities like squamous cell cancers 
of the oral cavity and throat, malignant paranasal sinus  
tumors and lymphomas to benign indications like paragan-
glioma.

Substantial improvements in treatment side effects 
have been achieved with intensity-modulated radiotherapy 
(IMRT) by sparing of salivary glands, mucosal surfaces and 
skin [38]. By improving precision in tumor and lymph node 
level delineation, MR imaging for radiotherapy treatment 
planning has the potential to further reduce uncertainty 
margins and treatment side effects.

Important structures for radiotherapy planning in  
head and neck cancer show superior depiction in MRI  
compared to CT. These include salivary glands and cervical 
lymph nodes [39], but also malignant tissues. Rasch et al.  
observed that tumor volumes in advanced head and neck 
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cancer delineated in MRI are smaller and show less  
interobserver variability than using CT alone [40] and  
in nasopharyngeal cancer, Chung et al. showed in a  
study of 258 patients that MRI was far superior than CT  
for the detection of intracranial and pterygopalatine fossa  
invasion [41]. 

MRI for radiotherapy treatment planning in the head 
and neck region benefits greatly from image acquisition  
in treatment position as anatomic changes may become  
extensive, if the configuration of the cervical spine,  
mandible or scapula is different [1]. The anatomic changes 
usually are too large to be solved by non-rigid registration 
techniques with clinically desired accuracy [42]. Multiple 
groups therefore have developed solutions to acquire  
the MRI in treatment position with mask immobilization.  
A common challenge for acquiring MR studies in treatment 
position is that thermoplastic mask systems do not fit  
into routine head and neck coils. The most common  
solution therefore is to use flexible surface coils instead  
[1, 43, 44], with high-channel coils enabling decently  
good image quality.

Fat-saturated 3D post-contrast T1w-sequences are 
generally considered to be the backbone for radiotherapy 
target delineation [1, 43]. With 3D T2-FLAIR sequences  
and diffusion-weighted sequences providing additional  
information for delineation [43, 45].

Liver and abdominal tumors
Patients suffering from hepatic tumors can undergo  
a broad range of treatment options including surgery,  
radiofrequency ablation (RFA) and stereotactic body radio-
therapy (SBRT). Large lesion size or close proximity to  
bigger vessels generally favor SBRT in comparison to RFA.  
A 2016 study published by Wahl et al. in the Journal of 
Clinical Oncology showed significantly improved tumor 
control for hepatocellular carcinoma treated with SBRT 
compared to RFA, if tumor diameter was ≥ 2 cm [46].

MR imaging is crucial for radiotherapy planning of  
hepatic tumors as the boundary of most lesions cannot  
be adequately discerned on CT and many tumors are not  
visible on CT at all.

Hepatic tumors usually show complex motion patterns 
during respiration as the liver not only undergoes move-
ment but also deformation during the respiratory cycle  
and is additionally influenced by abdominal peristalsis  
[47, 48]. At the same time, uncertainty margins need to  
be minimized to spare surrounding liver and bowel while  
escalating radiotherapy dose to the target. Tumor motion 
and integration with the remaining SBRT workflow there-
fore are the main challenges in liver MRI for radiotherapy 
treatment planning. 

Strategies for respiratory motion management in liver  
SBRT include internal target volume (ITV) concepts,  
expiration breath-hold, gating and tracking of tumor  
motion. As X-ray-based image guidance available at  
conventional linear accelerators does not visualize hepatic 
lesions, additional fiducials need to be invasively placed  
to allow for real-time image guidance. If radiotherapy is  
delivered exclusively in one respiratory phase, e.g. expira-
tion, breath-hold or navigator-triggered MR sequences  
can be acquired to best reflect the respiratory position 
during treatment. As usual, MR imaging in radiotherapy 
treatment position using a flat table-top and similar immo-
bilization equipment minimizes anatomic differences due 
to positioning. We currently use a navigator-triggered  
fat-saturated T2 TSE and EPI diffusion sequence as well as  
multiple breath-hold T1 VIBE Dixon sequences in different 
contrast phases for treatment planning. 

4D MRI techniques are very promising for radiotherapy 
target volume delineation as they provide multiple 3D 
datasets during the respiratory cycle. 4D respiratory- 
correlated MRI acquires respiratory motion across multiple 
breathing cycles, which are subsequently sorted according 
to respiratory phase [49]. In contrast to 4D CT, 4D respira-
tory-correlated MRI thus provides data on an average 
breathing cycle that might be more representative of  
the actual respiration during treatment. 4D MRI datasets  
can be used to create an internal target volume, that  
encompasses all possible tumor positions and is treated  
in free-breathing, but it can also be exploited for expiration 
breath-hold, gating and tracking strategies that limit  
dose to surrounding structures. One limitation for tumor  
tracking on conventional linear accelerators is that only  
the position of the fiducial itself is tracked and changes  
in tumor shape and position in relation to the fiducials  
are not captured. An interesting method was published  
in 2018 by Harris et al. to use a pre-treatment 4D MRI  
together with LINAC on-board kV projections to generate  
a synthetic on-board 4D MRI on conventional linear  
accelerators [50]. Real-time image guidance of abdominal 
tumors is of course also a prime use case for new  
MR-LINAC systems and a technique for generating synthet-
ic volumetric cine-MRI using the MR-LINAC on-board 
2D-cine imaging as well as a pretreatment 4D MRI was  
developed by the same group before [51]. We currently  
acquire a transversal 4D T1 StarVIBE-based respiratory 
self-gating series with and without contrast in MRI simula-
tion for liver SBRT reconstructing 5 to 7 respiratory bins.  
In our preliminary experience subtraction of pre- and  
postcontrast acquired 4D series further improves contrast 
ratio of target lesions.
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Prostate cancer
Prostate radiotherapy shows large benefits from MR imag-
ing. Accurate delineation of the prostate is impossible in CT 
alone and it has been shown that prostate segmentations 
in CT are significantly larger than MRI, which leads to  
unnecessary high doses to penile and surrounding nerve 
and vascular structures and increases the risk for long-term 
urologic side effects [52, 53]. Precise radiotherapy delivery 
also reduces acute and late rectal side effects like proctitis. 
We therefore currently employ a rectal balloon and bladder 
filling protocol to enable a reliable anatomic configuration 
at each treatment session [53]. To assure accurate  
registration, we perform a dedicated MRI for radiotherapy 
treatment planning using the same positioning with rectal 
balloon and bladder filling as at daily treatment session. 
(Fig. 3) While a range of different non-rigid registration 
solutions are available, these algorithms may be associated 
with problematic uncertainties. For example, Brock et al. 
have observed errors of up to 8.7 mm for the prostate itself 
in intramodality non-rigid registration of repeated prostate 
MRIs [54]. As errors with non-rigid registration largely  
depend on the amount of deformation [7], performing  
MR measurements in treatment position also increases the  
accuracy of any subsequent registration steps.

We currently employ an isotropic, axial T2 SPACE with 
compressed sensing acceleration as the main sequence  
for delineation of the prostate, seminal vesicles and pelvic 
lymph nodes in patients with prostate cancer (Fig. 1).  
In our experience, this sequence provides high tissue  
contrasts, large field of view and allows for high-resolution 
sagittal reconstruction for differentiation of the caudal 
prostate margin and structures of the pelvic floor. As  
detailed sagittal imaging of the prostate and pelvic floor 
structures is of high importance in our experience, we  
currently still employ an additional sagittal T2 BLADE, 
which suppresses motion artifacts and provides high  
signal-to-noise in the prostate region. We use an EPI diffu-
sion sequence with reduced volume excitation (ZOOMit)  
of the prostate region to get additional information on the 
location of malignant tumor inside the prostate (Fig. 1).

Summary
Optimal MR imaging for radiotherapy target delineation 
has distinct requirements that may be different from  
routine diagnostic indications. Demands on MR imaging  
in radiotherapy frequently are indication and site-specific, 
which needs to be addressed with specialized protocols. 
MRI for radiotherapy planning primarily needs to accurately 
and clearly depict the tumor perimeter in three-dimension-
al space for precise gross tumor volume delineation. In  
addition, 4D MRI techniques are capable of integrating  
tumor motion and have large potential to improve preci-
sion in radiotherapy of moving targets.
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