1499

Reader confidence in lesion detection and lesion characterization with xSPECT Bone

A. Hans Vija¹, Jun Ma¹, Peter Bartenstein⁵, Jerry Froelich³, Torsten Kuwert⁴,

Homer Macapinlac⁶, Aaron Jessop⁶, Esther Mena², Harun Ilhan⁵, Shirley Yang², Zsolt Szabo²;

¹Molecular Imaging, Siemens Healthcare, Hoffman Estates, IL, USA, ²Johns Hopkins University, Baltimore, MD, USA, ³University of Minnesota, Minneapolis, MN, USA, ⁴Friedrich-Alexander University, Erlangen, Germany, ⁵Ludwig-Maximilians University, Munich, Germany, ⁶MD Anderson Cancer Center, Houston, TX, USA.

INTRODUCTION

The recently introduced xSPECT Bone* (xB) incorporates tissue boundary delineation from a CT for bone SPECT imaging with Tc99m Di-phosphates. In this work we compare confidence in image interpretation between Flash 3D (F3D, OSEM3D) and a representative prototype of xB. Other aspects of the research are underway.

METHODS

- $\hfill \square$ 9 physicians read 76 anonymized scans
- □ Reconstructed with either F3D with clinically used parameters or xB with optimized parameters, displayed as either F3D, xB, F3D/CT, xB/CT in fully randomized sessions
- ☐ The readers evaluated image quality (noise, resolution, artifacts, overall acceptance) using a 5-point scale ☐ The readers assessed 3 VOIs placed on 3 bones for each patient. The VOIs were selected by a physician, who
- The readers assessed 3 VOIs placed on 3 bones for each patient. The VOIs were selected by a physician, wh was not part of the reader group, and included normal bones, as well as bones with malignant or benign lesions.
- ☐ For each VOI, readers answered two questions with a five-point scale rating:
 - ☐ Question 1: Is a lesion present?
 - Question 2: Is the lesion benign or malignant?
- Analysis method:
 - ☐ Global image quality: mean difference of ratings
 - \square Correlation: Pearson's chi square with Yates correction χ^2_{Yates}
 - \Box Confidence likelihood ratio $R_C = (H_{xB}/L_{xB})/(H_{F3D}/L_{F3D})$
 - H, when the lesion was clearly positive or negative (2,-2)
 - L, when the lesion was equivocal (-1,0,1)

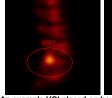


Fig 1. An example VOI placed on bone for F3D (left) and xB (right).

Data courtesy of Johns Hopkins University, Baltimore, Maryland, USA.



Fig 2. The user interface of clinical evaluation software. Data courtesy of University of Minnesota, Minneapolis, Minnesota, USA.

RESULTS AND ANALYSIS

Ratings of global image quality. Smaller score value meaning better results.

	F3D	хВ	xB-F3D	Std. Error	F3D/CT	xB/CT	xB/CT- F3D/CT	Std. Error	Conclusion
Background noise	2.220	1.936	-0.285	0.045	2.042	1.797	-0.246	0.0464	xB better, p < 0.001
Structure resolution	3.488	1.718	-1.771	0.049	3.181	1.502	-1.680	0.0517	xB better, p < 0.001
Artifacts severity	2.466	2.105	-0.358	0.057	2.107	1.878	-0.230	0.0531	xB better, p < 0.001
Overall acceptance	2.630	1.725	-0.905	0.054	2.408	1.538	-0.870	0.0533	xB better, p < 0.001

Lesion-based correlation analysis and confidence likelihood ratio

Q1	without CT							with CT					
Lesion Detection	xB high	xB low	total	xB high	xB low	total	Lesion Classification	xB high	xB low	total	xB high	xB low	total
F3D High	1103	141	1244	1290	135	1425	F3D High	156	79	235	706	157	863
F3D Low	303	505	808	215	412	627	F3D Low	392	963	1355	270	509	779
Total	1406	646	2052	1505	547	2052	Total	548	1042	1590	976	666	1642

	Statistical analysis	СТ		Q1 L	esion Detection	Q2 Lesion Classification			
			value	p value	Conclusion	value	p value	Conclusion	
	Correlation: χ^2_{Yates}	w/o CT	594.5	p < 0.001	Correlation high	124.4	p < 0.001	Correlation high	
		w/ CT	704.3	p < 0.001	Correlation high	377.5	p < 0.001	Correlation high	
	ti a	w/o CT	1.41x	p < 0.001	Confidence increased 41%	3.03x	p < 0.001	Confidence increased three folds	
		w/ CT	1.21x	p < 0.01	Confidence increased 21%	1.32x	p < 0.001	Confidence increased 32%	
	Note	$\chi^2_{Yates}(0.001, 1) = 10.83,$			Calculation of R_C example (548/1042) / (235/1355) = 3.03x				

CONCLUSION

Based on five-point scale image quality ratings, the xSPECT Bone (xB) resolution is improved by almost two points and overall acceptance is improved by one point compared to F3D (Table 1). The confidence level to characterize the lesion is significantly higher (3.03x w/o CT, 1.32x w/CT) with xB than with F3D (Table 2). In lesion detection and classification, there is high correlation between xB and F3D scores, but lesion detection confidence is increased by 41% w/o CT, and 21% w/ CT when using xB as compared to F3D (Table 3).

REFERENCES

- A. H. Vija, "Introduction to the xSPECT Technology: Evolving Multi Modal SPECT to Become Context Based and Quantitative.," Siemens Medical Solutions USA, Inc., Molecula Imaging, White Paper 2013.
- A. H. Vija, Z. Szabo, T. Kuwert, J. Froelich, P. Bartenstein, C. Daignault, N. Gowda, O. Hadjie, H. Ilhan, and S. Yang, "Evaluation of image quality and clinical acceptance of HD Bone, a novel multimodal SPECT/CT reconstruction method for Tc99m diphosphonate imaging," SNM Annual Meeting Abstracts 2013 54:339.
- 3. J. Ma, A. H. Vija, M. Bhattacharya and D. Spence, "A reconstruction parameter optimization scheme based on human observations", SNM Annual Meeting Abstracts 2013 54:2057 "XSPECT Bone is not commercially available in all countries. Due to regulatory reasons its future availability cannot be guaranteed. Please contact your local Siemens organization for further details.