
JAMSTACK FOR
WEB PROJECTS

FASTER, MORE SECURE AND
EASIER TO ADMINISTER

Scrivito CMS White Paper
New Enterprise SaaS CMS

2

JAMSTACK FOR WEB PROJECTS

In the early 2000s, web servers were developed

and optimized in leaps and bounds to deliver

HTML pages. These days, this has become a part

of the problem. Server-based web technologies

are no longer sufficiently performant, they are too

complex, too expensive, too high-maintenance and

too insecure. Over the past number of years a new,

serverless technological approach has become

established: Jamstack. This whitepaper explains

why we can expect a lot more from this technology.

15 to 20 years ago, it made sense to locate as much

work as possible on the webserver. User terminals

were inefficient and at best suitable for displaying

static HTML webpages. The server technology was

mainly composed of Linux, Apache, MySQL, and PHP

(LAMP stack). Not much has changed. When a user

calls up a web page today, the file is processed and

displayed in the browser after interaction between

the database, the backend code, the server, the

browser, and the cache. The server is doing all

the work and the user has to wait for the server to

finish. There may also be a load balancer involved,

which redirects the page requests to one of several

web servers.

FASTER, MORE SECURE AND EASIER TO ADMINISTER

An idea from the 90’s: when a user requests a web page, the file is processed after interaction between the database,
back-end code and server and then made available in the browser. However, the structure which was initially very simple
has now become very complex due to many new website requirements.

3

E-commerce functionalities, mobile applications,

product selection configurators, appointment

coordination functions, language assistant

integration and complete online contracting are all

typical requirements today. For this, a large number

of different content pools, product information,

CRM and ERP systems must be integrated with

ever-larger volumes of information. The application

logic is integrated into the website and connected

to processes in the back office. Subsequent

processing steps need to be automated even

further.

 1  https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks

Complex business requirements

The performance of the website is critical to

the success of the content provided. According

to a Google analysis1, 53% of visitors will leave

a mobile website if it has not loaded after three

seconds. However, 70% of the mobile landing pages

analyzed took more than five seconds to display the

visual content of the visible part of the webpage.

Increasingly complex web applications, however,

mean the loading time slows down ever further.

While servers in the past only had to generate

simple static HTML pages, database queries and

various other interfaces are now required and

HTML must be created on the fly for each visit.

This is a much slower, more complex process than

providing static content.

Performance problems

The static HTML pages of the early years have

now become dynamic web applications. Instead

of simple server infrastructure, a complex network

of databases, business services, video and image

services, and caching procedures is needed. The

more complex this network of procedures is, the

more cumbersome the performance becomes. It

also means that the maintenance and security

effort increases as the areas of interference and

those open to attack expand.

The new challenge for websites

4

As a new page view must be generated and

displayed for each new visitor to a page, efficient

infrastructure is needed. It must also be powerful

enough to perform well even during peak traffic.

To ensure web availability, additional redundant

servers, databases, and environments for

development, testing, and production, etc. are

required. This is relatively expensive as it was

typically planned well in advance for an estimated

peak usage. Additionally, all this equipment must

also be administered and maintained.

Traditional web applications are complex and

vulnerable as they consist of many server

components. Plug-ins from third parties are

particularly vulnerable. They are directly connected

to the core framework and can thus endanger

the entire website. According to a study by

WP WhiteSecurity², over 70% of all WordPress

installations on the internet are vulnerable.

Frequent security patches (542 patches for

WordPress alone in 2018)³ require a considerable

administrative effort. Maintenance costs are

among the main cost drivers of traditional content

management systems.

https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-installations-vulnerable/2

Extensive server infrastructure

Vulnerable applications

Nadav Avital, Imperva, Blog, “The State of Web Application Vulnerabilities in 2018”, January 20193

5

THE SERVER-BASED
ARCHITECTURE HAS BECOME
TOO COMPLEX

In order to keep dynamic web applications secure and performant, server-based architecture has become very complex.

Simple default configurations for databases no

longer meet current performance requirements.

This requires a lot of action and administration

(tuning, redundancies, migration in the CMS,

schema adjustment, backups, patches, updates,

indexing, etc.).

Databases

Without caching, performance is poor. The big

challenge is to keep the cache consistent and

valid across multiple servers and redundant

databases. This required a whole cascade of action

(database replication, content consistency, cache

invalidation, etc.).

Cache systems

6

Application server

Without Content Delivery Networks (CDN), large

videos and images are not readily available. These

large files take time to download and the further

they are away from the end-user the longer

the process takes. Conventional CMSs are not

designed for this, which means increased effort

(keeping content in sync, versioning, etc.) and poor

performance.

CDN

The issues of scaling, redundancy for servers and

load balancers, development, test and production

environments, firewall configuration, patches,

updates, etc. are all time-consuming and costly.

Server

This requires a high degree of administration (back-ups, keeping security plug-ins up-to-date, etc.).

7

THE TREND

The Jamstack approach (JavaScript, API, and

pre-rendered HTML markup) is just a few years

old. It is a new method of creating websites and

applications. Content is no longer processed and

generated afresh for every visitor on the server.

It is generated locally in the browser as Jamstack

pages. Dynamic applications can also be processed

in the browser thanks to JavaScript and APIs.

JAMSTACK IS THE NEW DEVELOPMENT ARCHITECTURE

The former principle of loading as much of the work

as possible onto the webserver is outdated. Today’s

user devices have more than enough resources to

run web applications. This also includes mobile

devices.

Relocation from the server to the browser

Google, Facebook, and others have developed

completely new web frameworks based on

JavaScript, such as the JavaScript library React,

and then released them as open source. React

has been the most popular and fastest-growing

JavaScript framework since its first application in

2011. The use of such web frameworks creates a new

development architecture, where applications are

no longer tied to specific operating systems or web

servers.

JavaScript frameworks

The Jamstack approach through JavaScript, Web APIs, microservices, CDN and pre-rendering greatly simplifies the
architecture, improves performance, and reduces costs.

8

Modern web APIs can be integrated for any JavaScript

client to implement third-party services such as

business applications with access to CRM and

ERP systems as well as eCommerce functionalities

such as payments and subscriptions. Utilizing web

APIs can eliminate the need for additional servers.

Because web functions no longer need to be

managed in the server, websites can be designed

around microservices. A microservice undertakes

a narrowly defined task which is initiated, carried

out and terminated independently of other

microservices.

Modern web APIs

Microservices architecture

Jamstack relocates the logic from the server to

the browser, where the pages are dynamically

generated through APIs and microservices.

Modern browsers can interact with many APIs

using JavaScript, as well as execute complex and

dynamic applications.

Current browser technologies

The tasks carried out at the backend, such as

creating, managing and saving content, are

separated from the presentation on a frontend

device (so the architecture is headless, or

decoupled). Once it has been created, content

can be used for any device. The functionality

taking place in the frontend and the deployment of

individual APIs can now be handled in isolation.

Decoupled architecture

In the Jamstack approach, the website HTML is

no longer generated by traditional frontend web

servers, but rather the page is preconfigured,

distributed via a Content Delivery Network (CDN),

and displayed in the user’s browser. All other

activity takes place in the browser because the

pages contain JavaScript code that access APIs

and is executed after the page is rendered.

Pre-rendering of HTML markup

9

The transition from the server-oriented LAMP

stack approach to the new Jamstack approach has

proven to be a practicable concept. In recent years,

a large number of Jamstack web projects have

been implemented. The concept applies to smaller

websites as well as complex web applications with

thousands of pages. However, this conversion

process should not be underestimated, because

a completely new architecture is used.

The switch to Jamstack is initially associated

with a degree of uncertainty. A new development

paradigm is being introduced, with new rules and

new processes. This conversion usually takes

a number of months and initially requires operating

parallel structures. However, this is nothing new for

IT, and there are extensive best practices available

for such a process. Additionally, as the process

is better understood, the conversion speeds up

drastically, saving vast amounts of time in the end.

An internal email written by Jeff Bezos4 in 2002 is

legendary: all of the teams at Amazon received the

binding instruction to make their data and functions

available only via service interfaces in the future.

Without exception. The transition to these formal

APIs made life difficult for employees in the short

term. However, Amazon was able to operate its

systems much more efficiently and it enabled, for

example, the launch of publicly available Amazon

Web Services.

Stepping into a new development environment

Bezos’s “API Manifesto”

 4  Source: Amazon Web Services (AWS), “Global Infrastructure”, August 2019

PARTICULAR CHALLENGES FOR
THE JAMSTACK APPROACH

The construction of the new architecture means

that new know-how about JavaScript, APIs,

microservices, etc. is also required by employees.

The existing, familiar system architecture is to be

replaced by a future-oriented cloud alignment.

Know-how and change processes

10

Using Jamstack means that every piece of

information must be available via an API. In

a traditional web server environment, a program

running in a standard browser would not have the

ability to communicate with a web API outside

its own domain. Only with the availability of full-

featured JavaScript frameworks and new standards

such as authorization and stateless authentication

was it possible to reach any modern web API from

any JavaScript client. This includes, for example,

the RESTful API for communication between

different services.

Communicate with web APIs

A key to new and secure client-side authentication

is the enforcement of the OpenID Connect open

standard. Technologies and identity providers such

as OAuth and Auth0 enable a central single sign-on,

which is now supported by all major platforms.

Authentication, Authorization, and Accounting (AAA)

In addition to developing new web frameworks,

the Jamstack approach requires more web

components. By separating the backend and

frontend, frontend architectures, browser

APIs, HTML and CSS standards could evolve

independently. For example, entire ecosystems are

developed for ready-made APIs for authentication,

for e-commerce, search and so on, or large libraries

for very specialized and reusable microservices.

Ecosystems for development environments

There were initially limitations in pre-rendering

HTML markup for too many pages. Because of its

size, the build and deploy cycle was very long. In

the meantime, rendering tools have become so fast

that thousands of pages can be processed within

minutes. The advantage of cloud-based structures

is also the possibility of parallelization through

Lamda processes. For example, Amazon Web

Services (AWS) can render thousands of pages

simultaneously in up to a thousand simultaneous

processes. In addition, content management

systems such as Scrivito have the ability to update

content after prerendering to include the latest

changes to all content, so that the delivered pages

are always up to date.

Limitations of pre-rendering

11

A geographically distributed CDN with locations

close to the user delivers the ready-made content

of the pages very quickly and ensures good

performance. Crucially, the CDN has a sufficiently

large number of distribution and end nodes with

redundant locations.

Content Delivery Network (CDN)

A globally distributed CDN, with locations close to the user, delivers the ready-made content of the pages very quickly
and ensures good performance. Native CMS cloud solutions like Scrivito have already integrated the CDN requirements
conceptually.

12

JAMSTACK FOR CONTENT
MANAGEMENT SYSTEMS

Headless / decoupled CMSs like Scrivito permit

users to implement special functions using ready-

made components (widgets). These widgets

range from building block elements for headlines,

lists, images, etc. to functional modules for user

interfaces, e.g. forms. These sophisticated, tested

components already possess a high degree of

maturity, which significantly reduces development

and maintenance time.

The Jamstack logic allows the flexible

implementation of any business requirement using

JavaScript, React, web APIs and microservices.

However, the CMS must support such individual

extensions and changes, e.g. by mapping specific

tasks to self-developed or pre-built components.

Ready-made components

Flexible and extendable

Jamstack pages can be controlled via a Content

Management System (CMS) known as a headless /

decoupled CMS (where the backend and frontend

are separate). The CMS backend application can

be completely relocated to the cloud, eliminating

the need to operate, administer and configure your

own servers or runtime environments. This gives

users the opportunity to focus more than ever on

the content and the business logic required for

it. However, this assumes that the CMS supports

more than just pure writing and reading processes.

With the increasing variety of devices in use,

the need for adaptable content presentation

increases. By linking a headless / decoupled CMS

with a Content Delivery Network (CDN), you can,

for example, have multiple resolutions of an image

prescaled and provided via the CDN for any devices

as a standard feature.

Pre-rendering images

13

Due to increasingly complex business functions,

a confusing variety of content elements can quickly

arise. However, outdated and poorly maintained

items such as price lists can lead to significant

problems. Therefore, CMS functions on versioning,

with rules on release, maintenance and updates are

required.

Content management logic

The cloud infrastructure enables elastic scalability

for traffic peaks and seasonal load fluctuations

such as Christmas traffic. Native CMS cloud

solutions also make a “CMS as a service” possible

with billing only for actual use (pay-per-use model).

100% cloud-based solution

Headless / decoupled CMSs like Scrivito are natively designed for the cloud. They leverage available resources and web
services such as big data, next-generation technologies (e.g. voice search, machine learning, AI), and cloud services
(e.g. Lambda functions, Amazon S3, Amazon EC2, DynamoDB, CIoudFront or the Amazon API Gateway).

14

CONCLUSION

JAMSTACK IS FASTER, MORE SECURE AND CHEAPER

The Jamstack approach has several key advantages

over the traditional server infrastructure. It enables

higher performance, improves security, lowers

costs, scales more easily, and delivers a better user

experience.

Simplified architecture

Better performance

More business efficient

The complex requirements of web servers, load

balancers, local caching mechanisms, capacity

planning and various redundancy layers are replaced

by a drastically simplified Jamstack architecture.

The execution logic is relocated from the server to

the browser. Performance and availability are thus

decoupled from the server infrastructure.

The user no longer has to wait for the server to finish

working on increasingly complex web applications.

Now, ready-made HTML pages can be delivered

very quickly via a CDN. With interactive pages and

additional user requests, individual microservices

deliver more results without having to completely

reload the page. What is also hugely relevant is that

better performance is an important SEO criterion

for search engine ranking.

JavaScript, APIs, and microservices enable new

business capabilities. Web applications become

dynamic and the services become interactive. Self-

created or pre-packaged microservices provide

required business functions such as product and

tariff comparisons or self-service capabilities.

15

Greater security

Lower operating costs

Better user experience

Instead of vulnerable servers and insecure

plug-ins, the drastically simplified Jamstack

architecture reduces attack potential. Significantly

less code (low code) simplifies quality monitoring

and increases stability. Individual microservices in

the web browser run independently and no longer

jeopardize the overall system.

The new structure has considerable operational

and maintenance advantages since servers no

longer need to be operated or maintained. Software

updates and security patches are eliminated.

A high degree of prefabricated and reusable

functional widgets also reduces the development

effort. Finally, a cloud-based CMS is only billed on

the basis of actual usage.

The performance of Jamstack also gives visitors

an app-like user experience on websites. Speed

and interactivity, as SEO-relevant properties, are

at a higher level both when a site is first called up

and during navigation between pages. A better

user experience is a measurable revenue factor,

as the bounce rate gets smaller and the greater

interactivity increases the retention time.

Higher availability

The simple architecture and the delivery of static

HTML files in conjunction with JavaScript lead to

very high levels of stability and security. A global

CDN ensures reliable availability at all times of the

day. Making use of a CDN is another advantage over

having your own server infrastructure as a single

point of failure (SPoF).

24h

16

JAMSTACK IS SETTING TRENDS
AND BEING DEVELOPED
FURTHER

The Jamstack approach, with a JavaScript library

such as React, web API, and pre-rendered HTML,

continues to thrive, in web applications in particular.

For example, React was originally developed for

Facebook and is now used with Netflix, AirBnB,

and Instagram. With React Native, a variant for the

development of mobile Android and iOS apps is now

available. Another future-oriented area is the use

of React 360 for 3D, virtual and augmented reality

applications. Finally, a headless / decoupled CMS

benefits from the Jamstack distribution capabilities

for many new devices and the implementation of

dynamic and interactive web applications.

© 2021 – All rights reserved – Scrivito is proudly made by JustRelate Group

in Berlin, Germany and Wrocław, Poland

JustRelate Group GmbH, Kitzingstraße 15, 12277 Berlin, Germany

www.scrivito.com

D-21-236905, Version 1

