

Technische Dokumentation

Inhalt

Einsatzbereich	2
Einsetzbare Volumenstrombereiche	2
Funktion	3
Verarbeitung	3
Zubehör	4
Abmessungen VMPR / VMPQ	5
Zubehör Abmessungen VMPR	
Zubehör Abmessungen VMPQ	8
Vor Montage und Inbetriebnahme	
Einbau-Wartung-Service	9
Statische Mindest-Druckdifferenz	
VMPR - Reglerstellung (Δp _{st min})	11
VMPR - Reglerstellung (m³/h)	12
VMPR - Strömungsrauschen	
VMPR - Abstrahlgeräusch	
VMPR - Abstrahlgeräusch mit Dämmschale	15
VMPR-RS - Einfügungsdämpfung	16
VMPQ - Reglerstellung Teil 1	17
VMPQ - Reglerstellung Teil 2	18
VMPQ - Strömungsrauschen Teil 1	19
VMPQ - Strömungsrauschen Teil 2	20
VMPQ - Abstrahlgeräusch Teil 1	21
VMPQ - Abstrahlgeräusch Teil 2	
VMPQ - Abstrahlgeräusch mit Dämmschale Teil 1	
VMPQ - Abstrahlgeräusch mit Dämmschale Teil 2	24
VMPQ-ZSQ - Einfügungsdämpfung	25
Legende	25
Bestellschlüssel VMPR	26
Bestellschlüssel VMPQ	27
Bestellschlüssel ZSQ	
Ausschreibungstext VMPR	29
Ausschreibungstext VMPQ	29

EINSATZBEREICH

Volumenstromregler für Zu- und Abluftsysteme, geeignet zur Regulierung eines konstanten Volumenstroms mit der Möglichkeit zur elektrischen Sollwertverstellung.

ACHTUNG

Der VMPR/ VMPQ ist ein justierter Regler mit mechanischem Wirkprinzip. Eingriffe in den Regler, egal ob manueller oder mechanischer Art, sind unzulässig. Wenn eine hohe Volumenstromeinstellung gewählt ist, darf das Klappenblatt niemals manuell geschlossen werden. Ansonsten wird der Regelmechanismus verstellt und dies hat einen Verlust der Regelgenauigkeit zur Folge. Der Einsatzbereich muss stets beachtet werden. Wird der VMPR/ VMPQ über den zulässigen Einsatzbereich hinaus eingesetzt, führt dies zu mechanischer Überlastung und damit zum Verlust der Regelgenauigkeit.

Wir weisen darauf hin, dass zur Reinigung von Edelstahlausführungen nur entsprechende Pflegemittel verwendet werden dürfen.

KORREKTURFAKTOREN ZU LUFTMENGEN

Bei $\Delta p \ge 500$ Pa können Abweichungen bis zu 20% des eingestellten Wertes auftreten.

 $\begin{tabular}{lll} Maximale Abweichung auf den eingestellten Wert: NW 80 \\ Luftgeschwindigkeit & 2-5 m/s & <math>\pm 20\% \\ Luftgeschwindigkeit & 5-6 m/s & <math>\pm 15\% \\ Luftgeschwindigkeit & 7-8 m/s & <math>\pm 10\% \\ Skalengenauigkeit & & \pm 4\% \\ \end{tabular}$

 $\begin{tabular}{lll} Maximale Abweichung auf den eingestellten Wert: \\ Luftgeschwindigkeit & 1-4 m/s & <math>\pm 20\% \\ Luftgeschwindigkeit & 4-5 m/s & <math>\pm 10\% \\ Luftgeschwindigkeit & 5-7 m/s & <math>\pm 8\% \\ Luftgeschwindigkeit & 7-10 m/s & <math>\pm 6\% \\ Skalengenauigkeit & & \pm 4\% \\ \end{tabular}$

VMPR / VMPQ

TECHNISCHE DOKUMENTATION

Einsatzbereich | Einsetzbare Volumenstrombereiche

EINSETZBARE VOLUMENSTROMBEREICHE

Volumenstrombereiche für VMPR

NW	V _{zu} (r	n³/h)	V _{zu}	[l/s]
(mm)	min.	max.	min.	max.
80	45	125	13	35
100	50	230	14	64
125	120	400	33	111
160	130	640	36	178
200	150	1050	42	292
250	300	1500	83	417
315	650	2450	181	681
400	700	4200	194	1167

Volumenstrombereiche für VMPQ

ВхН	V _{zu} (r	n³/h)	V _{zu}	[l/s]
(mm)	min.	max.	min.	max.
200 x 100	200	800	56	222
300 x 100	325	1075	90	299
300 x 150	250	1500	69	417
300 x 200	225	1800	63	500
400 x 200	500	2050	139	569
400 x 250	850	3200	236	889
400 x 300	700	3600	194	1000
400 x 400	900	4400	250	1222
500 x 200	650	3100	181	861
500 x 250	950	4200	264	1167
500 x 300	1200	4800	333	1333
500 x 400	1300	6200	361	1722
600 x 200	450	4100	125	1139
600 x 250	1200	4600	333	1278
600 x 300	1700	5800	472	1611
600 x 400	1900	8200	528	2278

Bei der Parametrierung der Regelkomponenten ist eine Luftdichte von 1,2 kg/m³ berücksichtigt worden. Bei Unterschreiten der in den Tabellen angegebenen Luftvolumen für V_{min} kann eine korrekte Funktion der Volumenstromregler nicht mehr gewährleistet werden.

FUNKTION

Der Konstant-Volumenstromregler VMPR/ VMPQ arbeitet selbsttätig ohne Hilfsenergie. Die zentrisch, kugelgelagerte Klappe wird von der Luftgeschwindigkeit bewegt. Eine Regeleinheit mit Regelkurve, Feder und Dämpfer ist außen am verzinkten Stahlblechgehäuse angebaut. Der vorgegebene Volumenstrom wird werkseitig eingestellt. Ein nachträgliches Verstellen des Volumenstroms ist möglich (Einstellkurve am Gehäuse). Die Regeleinheit ist durch eine Abdeckhaube geschützt. Der Regler kann in jeder Einbaulage eingebaut werden.

--- Betriebstemperatur: 10-50° C --- Differenzdruckbereich: 50 - 1000 Pa

--- Gehäuseleckage nach DIN EN 1751, Klasse C

Der mechanische Volumenstromregler VMPR / VMPQ mit Stellantrieb ist geeignet für eine Anpassung des Zu- oder Abluftvolumens an sich ändernde Raumbelegungen. Sollte dies notwendig sein so ist dies ohne Entfernung der Zwischendecke möglich.

Im Auslieferzustand sind die Volumenstromregler VMPR/ VMPQ auf V_{min} eingestellt. Der Regler ist bauseits an die Spannungsversorgung anzuschließen und muss dann bauseitig auf die gewünschte Regelstellung eingestellt werden. Die Regeleinheit mit Regelkurve, Feder, Dämpfer und Stellantrieb ist außen am verzinkten Stahlblechgehäuse angebaut. Der vorgegebene Volumenstrom wird werkseitig eingestellt.

Dank des Stellantriebs kann der Volumenstromregler auf den gewünschten Volumenstrom innerhalb des Regelbereichs problemlos angepasst werden. Wird eine mechanische Begrenzung des Regelbereiches am Antrieb eingestellt über die Anschläge, sind folgende Einstellwerte möglich:

Um bei den Reglern unnötige Fehlerquellen auszuschließen, sollten die Hinweise auf S.9 eingehalten werden. Die Einstellwerte für stetig regelnde Stellantriebe können der Reglereinstellung entnommen werden. Bei AUF / ZU Stellantrieben folgt die Reglereinstellung durch eine mechanische Begrenzung.

--- Anschläge für eine mechanische Begrenzung können nur in den Skalenbereichen 1-7 und 3-10 realisiert werden (vergl. hier: Tabelle Reglereinstellung)

VMPR / VMPQ

TECHNISCHE DOKUMENTATION

Funktion | Verarbeitung

VERARBEITUNG

Gehäuse

Stahlblech verzinkt (Standard) (-SV) Stahlblech verzinkt mit DD-Lackierung (-DD) Edelstahl 1.4301 (V2A) (-V2) oder 1.4571 (V4A) (-V4)

Regelklappe

Aluminium (VMPR für NW </=160)
Aluminium mit DD-Lackierung (VMPR für NW </=160)
Stahlblech verzinkt (VMPR für NW >160 | VMPQ)
Stahlblech verzinkt mit DD-Lackierung (VMPR für NW >160 | VMPQ)

Edelstahl 1.4301 (V2A) oder 1.4571 (V4A), optional zu Stahlblech verzinkt gegen Aufpreis

Regelgehäuse

Kunststoff, halogenfrei Edelstahl 1.4301 (V2A) oder 1.4571 (V4A)

ZUBEHÖR

Dämmschale (-DS2)

Aus schalldämmendem, isolierendem Material 20 mm, nicht brennbar nach DIN 4102-17, mit Blechummantelung aus verzinktem Stahlblech (Standard), Edelstahl 1.4301 (V2A) oder 1.4571 (V4A), mit Käfigmuttern (M6) (nur VMPQ)

Flachbett-Dämmschale (-FD1) - nur VMPR

Aus schalldämmendem, isolierendem Material 3 mm mit Blechummantelung aus verzinktem Stahlblech (Standard), Edelstahl 1.4301 (V2A) oder 1.4571 (V4A)

Flach-Flansch (-FF1/-FF2) - nur VMPR

beidseitig, nach DIN 24 154/5, hergestellt aus dem Material aus dem das Gehäuse besteht

Gummilippendichtung (-GD1) - nur VMPR

beidseitig, Spezialgummi, silikonfrei

METU-Flansch (-MF1/-MF2) - nur VMPR

beidseitig, Rohrflansch

Gegenflansch (-GF) (Paar), lose - nur VMPR

beidseitig, zu METU-Flansch

Spannring (-SR) (Paar), lose - nur VMPR

zum Verbinden von METU-Flansch und Gegenflansch

Mineralwolle-Schalldämpfer (-ZSQ) - nur VMPQ

- --- Gehäuse aus Stahlblech verzinkt (Standard), Edelstahl 1.4301 (V2A) oder 1.4571 (V4A)
- --- Kulissen-Rahmen aus Stahlblech verzinkt (Standard), Edelstahl 1.4301 (V2A) oder 1.4571 (V4A), beidseitig mit METU-Profil M2
- --- Mineralfaserplatten gemäß DIN 4102 A2, mit Glasseide-abdeckung, biolöslich, abriebfest

Rohrschalldämpfer (-RS) - nur VMPR

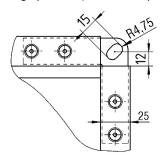
- --- starre Ausführung
- --- Außenmantel und Lochblech aus Stahlblech verzinkt (Standard), Edelstahl 1.4301 (V2A) oder 1.4571 (V4A).
- --- Mineralwollfüllung

Elektrischer Stellantrieb (-E044/-E045/-E046/-E016)

- 3-Punkt-Regelung (Standard):
- --- VMPR/ VMPQ-...-E044; 24V
- --- VMPR/ VMPQ-...-E045; 230V

Stetige Regelung:

- --- VMPR/ VMPQ-...-E046; 24V
- --- VMPR/ VMPQ-...-E016; 230V


VMPR / VMPQ

TECHNISCHE DOKUMENTATION

Zubehör l

Eckwinkel - nur VMPQ

Der Volumenstromregler VMPQ wird standardmäßig mit Eckwinkel geliefert. Die spezielle Form der Ecklöcher ermöglicht eine Verbindung mit den auf dem Markt befindlichen Verbindungssystemen (z.B.: METU-System M 2/M 3).

Bitte beachten!

Stand: 2020-10-01 | Seite 4

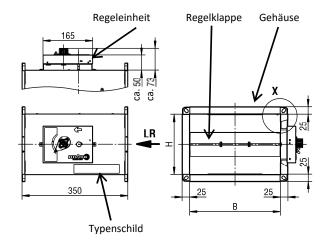
Spannringe, Gegenflansche und Rohrschalldämpfer sind separat zu bestellen und werden lose mitgeliefert!

Abmessungen VMPR / VMPQ |

ABMESSUNGEN VMPR / VMPQ

VMPR

Runde Bauform, für Rohranschluss nach DIN EN 1506, lageunabhängig einbaubar.


Lieferbare Größen VMPR

NW	øD	L
80	78	290
100	98	290
125	123	290
160	158	290
200	198	290
250	248	390
315	313	390
400	398	490

VMPQ

Eckige Bauform, für Kanalanschluss nach DIN 1505, Ausführung rechts.

Der VMPQ wird ausschließlich in der Ausführung rechts geliefert. Wird die Anordnung der Regeleinheit auf der linken Seite gewünscht, muss der VMPQ um 180° gedreht werden.

Lieferbare Größen VMPQ

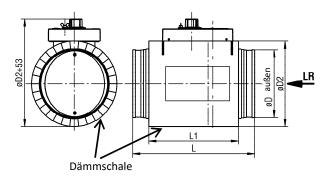
		Breite B							
		200	300	400	500	600			
	100	х	х	-	-	-			
	150	1	х	1	-	-			
e H	200	ı	х	х	х	х			
Н әүе Н	250	-	-	х	х	х			
	300	-	-	х	х	х			
	400	-	-	x ^{1.)}	x ^{1.)}	x ^{1.)}			

x = lieferbar

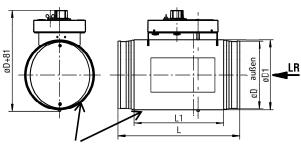
- = nicht lieferbar

LR = Luftrichtung

x^{1.)} = mit zwei Regeleinheiten


VMPR / VMPQ

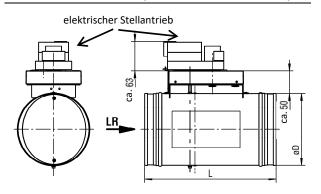
TECHNISCHE DOKUMENTATION


Zubehör Abmessungen VMPR |

ZUBEHÖR ABMESSUNGEN VMPR

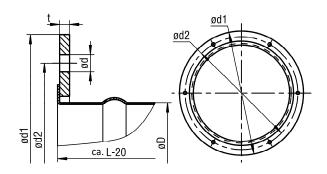
Dämmschale (-DS2, Isolierung = 20 mm)

Flachbett-Dämmschale (-FD1)



Flachbett-Dämmschale

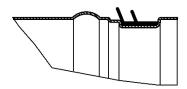
Lieferbare Größen Flachbett-Dämmschale (-FD1)


NW	øD	øD1	øD2	L	L1
80	78	84	120	290	205
100	98	104	140	290	205
125	123	129	165	290	205
160	158	164	200	290	205
200	198	204	240	290	205
250	248	254	290	390	230
315	313	319	355	390	260
400	398	404	440	490	360

Elektrischer Stellantrieb (-E044/-E045/-E046/-E016)

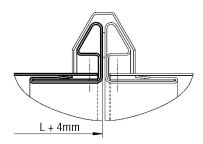
Flach-Flansch (-FF1/-FF2)

beidseitig - nur VMPR - nach DIN 24 154/5


Lieferbare Größen Flach-Flansch (-FF1/-FF2)

NW	øD	L	ød1	ød2	ød	LOA*	t
80	78	290	132	108	7	4	3
100	98	290	154	129	7	4	3
125	123	290	177	155	7	4	3
160	158	290	222	194	7	6	4
200	198	290	263	235	7	6	4
250	248	390	313	286	7	6	4
315	313	390	388	356	9,5	8	5
400	398	490	474	438	9,5	12	5

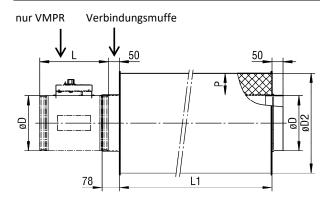
^{*} Lochanzahl


Gummilippendichtung (-GD1)

nur VMPR Einzelheit X

METU-Flansch (-MF1/-MF2)

mit Gegenflansch (-GF), lose und Spannring (-SR), lose beidseitig (nur VMPR)



Zubehör Abmessungen VMPR |

Stand: 2020-10-01 | Seite 7

Rohrschalldämpfer (-RS)

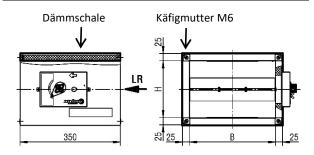
Packungsdicke - Rohrschalldämpfer (-RS)

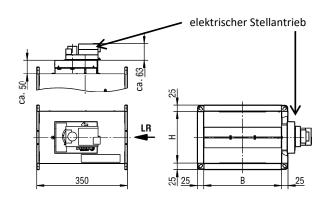
NW	L1=	500	L1=950		L1=1450		L1=1950	
	P (n	nm)	P (mm)		P (r	P (mm)		nm)
	50	100	50	100	50	100	50	100
80	Х	Х	Х	Х	-	-	-	-
100	Х	Х	Х	х	Х	1	Х	-
125	х	Х	Х	х	х	-	х	-
160	х	Х	Х	х	х	Х	-	х
200	х	Х	Х	х	Х	Х	-	х
250	Х	х	х	х	х	х	-	х
315	х	Х	Х	х	х	Х	-	-
400	Х	Х	Х	х	Х	Х	-	-

x = lieferbar

Lieferbare Größen - Rohrschalldämpfer (-RS)

NW	L	øD	øD2	
			50	100
80	290	78	180	280
100	290	98	200	300
125	290	123	225	325
160	290	158	260	360
200	290	198	300	400
250	390	248	350	450
315	390	313	415	515
400	490	398	500	600


^{- =} nicht lieferbar

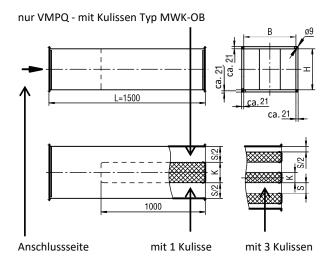

Zubehör Abmessungen VMPQ |

ZUBEHÖR ABMESSUNGEN VMPQ

Dämmschale (-DS2, Isolierung 20 mm)

elektrischem Stellantrieb (-E044/-E045/-E046/-E016)

Lieferbare Größen -DS2 / -E...


		Breite B							
		200	300	400	500	600			
	100	х	х	-	-	-			
	150	-	х	-	-	-			
Höhe H	200	-	х	х	х	х			
Höh	250	-	1	х	Х	х			
	300	-	ı	х	х	х			
	400	-	1	x ^{1.)}	x ^{1.)}	x ^{1.)}			

x = lieferbar - = nicht lieferbar LR = Luftrichtung

x ^{1.)} = mit zwei Regeleinheiten

----->>>> Die Parameter KA (Kulissenanzahl), K (Kulissenstärke) und S (Spaltbreite) sind von der Breite B abhängig.

Mineralwolle-Schalldämpfer (-ZSQ)

Einfügungsdämpfung ZSQ

В		D _e [dB/Okt]								
(mm)				f _m (Hz)					
	63	53 125 250 500 500 1000 4000 8000								
200	1	3	9	18	36	37	22	13		
300	1	2	4	8	15	14	9	6		
400	1	4	11	19	25	20	11	7		
500	1	4	7	8	15	15	8	5		
600	1	3	9	18	36	37	22	13		

Lieferbare Größen ZSQ

H (mm)	B (mm)	KA (-)	K (mm)	S (mm)	
100	200	1	100	100	
100					
150	300	1	100	200	
200					
200					
250	400	1	200	200	
300	400	1	200	200	
400					
200					
250	500	1	200	300	
300	500	1	200	300	
400					
200					
250	600	3	100	100	
300					

VOR MONTAGE UND INBETRIEBNAHME

Jedem SCHAKO-Produkt liegt ein Beipackzettel zu Sicherheit, Transport, Entsorgung sowie Einbau, Inbetriebnahme, Wartung bei. Dieser Beipackzettel muss aus Sicherheitsgründen unbedingt gelesen und vollständig beachtet werden.

KENNZEICHNUNG

Diese Geräte sind NICHT geeignet für den Einsatz in nicht freigegebenen Ex-Zonen. Die Betriebssicherheit der Geräte ist nur bei bestimmungsgemäßer Verwendung gewährleistet.

ENTSORGUNG

Die Geräte sind entsprechend der RoHS-Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (2002/95/EG) hergestellt. Nach endgültiger Außerbetriebnahme ist der Volumenstromregler fachgerecht zu entsorgen.

PRÜFUNGEN UND NORMEN

Der Volumenstromregler VMPR/ VMPQ ist von der benannten Stelle nach folgenden Regeln geprüft worden:

Durchgeführte Prüfungen

- --- VDI 6022, Blatt 1: Hygiene-Anforderungen an Raumlufttechnische Anlagen und Geräte
- --- DIN 1946, Blatt 2: Raumlufttechnik Gesundheitstechnische Anforderungen
- --- DIN EN 13779 (2007): Lüftung von Nichtwohngebäuden

Angewandte Normen

- --- Leckluft: EN 1751 (2011-02)
- --- EMV 2014/30/EU

VMPR / VMPQ

TECHNISCHE DOKUMENTATION

Vor Montage und Inbetriebnahme | Einbau-Wartung-Service

EINBAU-WARTUNG-SERVICE

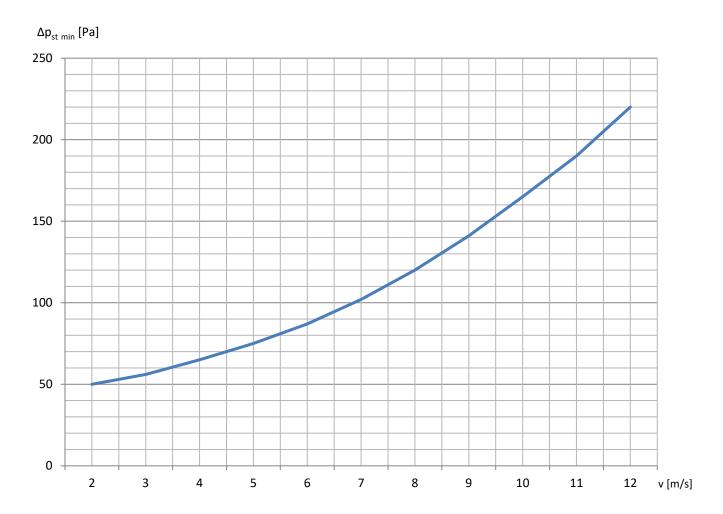
Notwendige Abstände

Um bei den Reglern unnötige Fehlerquellen auszuschließen sollten die Mindestabstände gemäß der folgenden Tabelle und Zeichnungen eingehalten werden. Bei einer Kombination mehrerer Formstücke oder Formstücke mit Brandschutzklappen bzw. mit Schalldämpfer sind jeweils die höheren Mindestabstände einzuhalten. Alle Volumenstromregler können mit waagrechter oder senkrechter Klappenachse eingebaut werden.

Abstand nach	VMPR	VMPQ
Bogen-Formstück	1 x D	1 x Diagonale
sonstige Formstücke (z.B. T-Stück, Abzweigstück, Reduzierung usw.)	2 x D	2 x Diagonale
Brandschutzklappe	2 x D	2 x Diagonale
Schalldämpfer	2 x D	2 x Diagonale

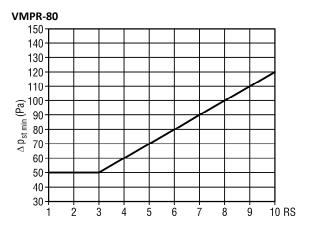
Montage

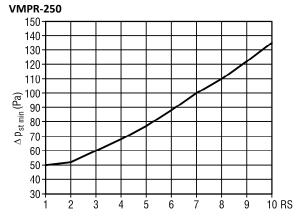
Die Regler sind so einzubauen, dass eine Revision möglich ist. Für Luft mit klebrigen und fettigen Bestandteilen sind die Volumenstromregler nicht geeignet.

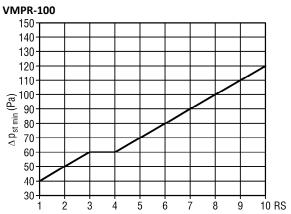

- --- Bei der Geräteanlieferung sind die Regler auf Vollständigkeit und Transportschäden zu überprüfen. Im Reklamationsfall sind der Spediteur und die Firma SCHAKO umgehend zu verständigen.
- --- Volumenstromregler dürfen nicht an den Reglerkomponenten oder am Klappenblatt transportiert werden, sondern nur am Gehäuse.
- --- Die Regler sind auf der Baustelle sorgfältig zu lagern. Sie müssen vor Staub, Schmutz und direkten Witterungseinflüssen geschützt werden.
- Die Montage ist von Fachpersonal unter Einhaltung der anerkannten Regeln der Technik und Vorschriften durchzuführen.

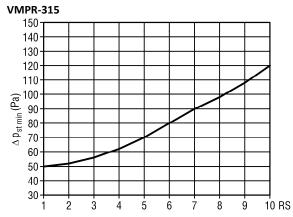
Statische Mindest-Druckdifferenz

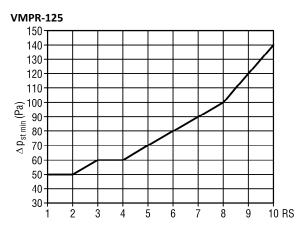
STATISCHE MINDEST-DRUCKDIFFERENZ

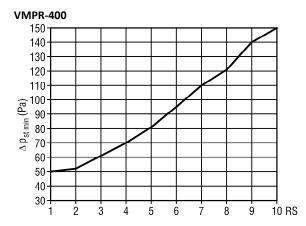

VMPR / VMPQ






VMPR - Reglerstellung (Δpst min)


VMPR - REGLERSTELLUNG (Δp_{ST MIN})



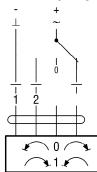


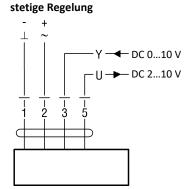
VMPR - Reglerstellung (m3/h) |

Stand: 2020-10-01 | Seite 12

VMPR - REGLERSTELLUNG (m³/h)

		Ÿ				Nennw	eite NW				V*
			80	100	125	160	200	250	315	400	
	1	(m³/h)	45	50	120	130	150	300	650	700	2
		[l/s]	13	14	33	36	42	83	181	194	2
	2	(m³/h)	55	70	160	210	270	400	800	1000	2,9
		[l/s]	15	19	44	58	75	111	222	278	2,9
	3	(m³/h)	65	100	200	280	400	575	1050	1600	3,8
	3	[l/s]	18	28	56	78	111	160	292	444	3,6
	4	(m³/h)	80	130	240	350	520	750	1300	2000	4,7
S	-	[l/s]	22	36	67	97	144	208	361	556	4,7
Reglerstellung RS	5	(m³/h)	90	150	270	410	630	900	1550	2500	5,6
<u> </u>		[l/s]	25	42	75	114	175	250	431	695	3,0
erste	6	(m³/h)	100	170	300	460	730	1050	1800	2900	6,5
egle	0	[l/s]	28	47	83	128	203	292	500	806	0,5
"	7	(m³/h)	105	190	330	510	820	1175	2000	3300	7,3
		[l/s]	29	53	92	142	228	326	556	917	7,5
	8	(m³/h)	110	210	360	560	900	1300	2150	3600	8,2
	•	[l/s]	31	58	100	156	250	361	597	1000	0,2
	9	(m³/h)	120	220	380	600	980	1400	2300	4000	9,1
		[l/s]	33	61	106	167	272	389	639	1111	3,1
	10	(m³/h)	125	230	400	640	1050	1500	2450	4200	10
	10	[l/s]	35	64	111	178	292	417	681	1167	10


In Regelstellung 1 und 2 muss Δp >100 Pa sein.


Schaltplan Regler

mit Stellantrieb elektrisch:

- --- 3-Punkt-Regelung (Standard: VMPR-...-E044; 24V, VMPR-...-E045; 230V)
- --- stetige Regelung (VMPR-...-E046; 24V, VMPR-...-E016; 230V)

3-Punkt-Regelung

^{* =} Ansteuerung in Volt für VMPR mit E016 und E046

VMPR - Strömungsrauschen |

VMPR - STRÖMUNGSRAUSCHEN

NW	RS	١	7		Δ	p _{st} =	100 F	Pa Pa				Δ	p _{st} =	250 F	Pa				Δ	p _{st} =	500 F	Pa		
					L	w (dE	3/Okt	t)				L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)		
			•			fm	(Hz)			(A)			fm	(Hz)			(A)			fm	(Hz)			(A)
		(૫/ _ε ɯ)	[s/i]	125	250	005	1000	2000	4000	[(A)Bb] \	125	250	200	1000	2000	4000	[(A)Bb [vw]	125	250	200	1000	2000	4000	Lwa [dB(A)]
	3	65	18	42	42	42	41	41	41	47	48	48	46	47	47	47	53	52	52	51	51	51	51	57
80	6	100	28	45	45	45	44	44	44	50	51	51	50	50	50	50	56	55	55	54	54	54	54	60
	10	125	35	49	49	49	48	48	48	54	54	54	54	53	53	53	59	59	59	58	58	58	58	64
	3	100	28	35	35	35	35	34	31	40	42	42	41	41	41	41	47	48	48	48	47	47	47	53
100	6	170	47	39	39	39	39	38	37	44	46	47	46	45	46	46	52	52	52	52	52	52	49	58
	10	230	64	42	42	42	42	42	41	48	52	52	51	51	51	51	57	55	56	57	56	54	51	61
	3	200	56	37	38	37	36	36	31	41	45	47	47	46	44	42	51	51	51	51	51	51	50	57
125	6	300	83	43	43	43	41	41	39	47	50	51	51	50	49	47	55	56	56	56	56	56	54	62
	10	400	111	47	48	48	47	46	45	53	55	55	54	54	54	52	60	61	61	61	60	60	58	66
	3	280	78	43	43	43	43	42	37	48	51	51	53	53	51	46	57	57	57	57	57	57	56	63
160	6	460	128	48	47	47	47	47	43	52	55	55	56	56	54	51	61	61	62	62	62	62	61	68
	10	640	178	50	49	49	49	49	46	54	57	57	58	58	56	55	63	64	64	64	64	64	62	70
	3	400	111	42	42	42	42	41	36	47	50	50	50	49	48	42	54	56	56	55	55	55	52	61
200	6	730	203	49	48	48	49	48	43	54	56	56	55	55	55	50	60	61	61	61	60	60	58	66
	10	1050	292	53	53	53	53	52	48	58	60	60	60	59	59	56	65	65	65	64	64	64	62	70
	3	575	160	42	41	41	41	36	28	44	50	51	51	51	48	40	55	58	58	58	57	56	50	62
250	6	1050	292	48	48	48	48	45	37	52	55	56	55	55	54	48	60	61	61	60	60	59	56	65
	10	1500	417	52	52	52	52	51	43	56	59	59	58	58	58	53	63	63	63	63	62	62	60	68
	3	1050	292	46	45	45	44	39	31	48	52	52	51	51	48	40	55	59	59	59	59	58	50	63
315	6	1800	500	51	51	51	50	46	38	54	58	58	57	57	55	47	61	64	63	63	63	63	56	68
	10	2450	681	55	54	54	54	50	42	57	60	60	60	60	58	50	64	66	65	65	65	65	59	70
	3	1600	444	53	54	54	54	46	40	57	58	60	60	60	59	49	64	63	64	64	64	63	56	69
400	6	2900	806	56	57	57	57	49	44	60	61	63	63	63	62	52	67	67	68	67	67	68	60	72
	10	4200	1167	60	61	60	60	55	48	63	65	67	67	67	66	56	71	70	71	70	70	70	63	75

VMPR - Abstrahlgeräusch |

VMPR - ABSTRAHLGERÄUSCH

NW	RS	\	/		Δ	p _{st} =	100 F	Pa				Δ	p _{st} =	250 F	Pa				Δ	p _{st} =	500 F	Pa		
					L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)		
			•			fm	(Hz)			(A)			fm	(Hz)			(A)			fm	(Hz)			(A)
		(૫/ _ε ɯ)	[s/i]	125	250	200	1000	2000	4000	[(A)Bb(A)]	125	250	200	1000	2000	4000	[(A)Bb [vw]	125	250	200	1000	2000	4000	Lwa [dB(A)]
	3	65	18	27	28	30	31	28	27	34	31	32	34	38	33	32	40	38	37	39	42	37	35	44
80	6	100	28	29	31	33	34	30	29	37	33	35	38	41	36	35	43	42	40	43	45	40	37	47
	10	125	35	33	35	36	38	34	33	41	37	38	42	43	40	38	47	44	44	47	49	44	41	51
	3	100	28	20	21	23	25	24	21	29	30	31	31	31	30	29	35	33	36	37	39	36	34	42
100	6	170	47	23	22	24	28	26	24	31	34	36	36	35	35	33	40	37	39	41	43	38	36	46
	10	230	64	26	25	27	31	28	26	34	38	40	41	40	40	38	45	40	42	46	47	41	38	49
	3	200	56	24	26	25	28	24	26	31	33	34	36	37	33	30	40	36	38	40	41	40	37	45
125	6	300	83	29	30	31	32	29	26	35	38	39	40	41	38	34	44	41	43	45	46	44	42	50
	10	400	111	32	32	35	36	33	27	39	42	43	44	45	42	38	48	45	48	50	51	47	46	54
	3	280	78	29	29	30	31	27	26	34	37	38	40	43	39	34	46	42	43	47	48	43	40	51
160	6	460	128	33	33	34	35	31	30	38	41	43	44	47	42	38	49	46	47	52	53	48	43	56
	10	640	178	35	35	36	37	34	32	40	44	45	47	49	44	40	51	48	49	55	55	50	46	58
	3	400	111	24	26	28	30	26	20	33	35	38	38	39	36	33	42	41	43	44	46	43	38	49
200	6	730	203	31	33	34	35	33	27	39	41	43	45	45	42	40	48	46	47	50	51	48	43	54
	10	1050	292	35	38	38	40	37	32	43	45	48	49	50	46	44	53	50	51	53	54	51	48	57
	3	575	160	25	26	27	27	24	22	31	35	37	39	41	34	34	43	43	45	47	47	45	37	51
250	6	1050	292	30	31	33	34	32	30	38	41	42	43	46	41	39	48	46	48	51	50	48	38	54
	10	1500	417	33	35	37	39	38	35	43	45	45	47	49	46	43	52	48	51	52	54	51	39	57
	3	1050	292	26	29	33	34	29	23	37	38	38	41	42	38	34	44	44	46	48	50	43	39	52
315	6	1800	500	34	38	39	40	33	27	42	42	44	46	48	45	36	51	49	51	52	54	49	43	57
	10	2450	681	37	41	40	42	34	28	44	43	45	48	50	46	36	53	50	52	53	54	51	44	58
	3	1600	444	41	43	43	44	36	30	46	43	46	49	50	47	39	53	48	51	53	55	51	43	58
400	6	2900	806	43	43	46	47	38	37	49	46	50	51	53	51	41	56	52	56	56	58	54	46	61
	10	4200	1167	49	48	49	50	45	39	53	50	54	55	57	55	45	60	55	58	59	60	57	50	63

VMPR - Abstrahlgeräusch mit Dämmschale |

VMPR - ABSTRAHLGERÄUSCH MIT DÄMMSCHALE

NW	RS	١	7		Δ	p _{st} =	100 F	Pa				Δ	p _{st} =	250 F	Pa				Δ	p _{st} =	500 F	Pa		
					L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)				L	w (dE	J/Ok	t)		
					_	fm	(Hz)		_	(A)]		_	fm	(Hz)	_		(A)]		-	fm	(Hz)	_	_	(A)
		(m³/h)	[s/ı]	125	250	200	1000	2000	4000	L _{WA} [dB(A)]	125	250	200	1000	2000	4000	Lwa [dB(A)]	125	250	200	1000	2000	4000	Lwa [dB(A)]
	2																							<u>د</u> 39
	3	65	18	22	25	27	25	19	15	29	26	29	31	32	24	20	34	33	34	36	36	28	23	
80	6	100	28	24	28	30	28	21	17	32	28	32	35	35	27	23	38	37	37	40	39	31	25	42
	10 3	125 100	35 28	28 15	32	33 20	32 19	25 15	21 15	35 23	32	35 28	39	37	31 21	26 17	41	39 28	41	44	43 33	35 27	29 22	46 36
100	6	170	47	18	18 19	21	22	17	15	25	25 29	33	28 33	25 29	26	21	30	32	33 36	34	37	29	24	40
100	10	230	64	21	22	24	25	19	15	28	33	37	38	34	31	26	39	35	39	43	41	32	26	44
	3	200	56	19	23	22	22	15	15	25	28	31	33	31	24	18	35	31	35	37	35	31	25	39
125	6	300	83	24	27	28	26	20	15	30	33	36	37	35	29	22	39	36	40	42	40	35	30	44
123	10	400	111	27	29	32	30	24	15	34	37	40	41	39	33	26	43	40	45	47	45	38	34	49
	3	280	78	24	26	27	25	18	15	29	32	35	37	37	30	22	40	37	40	44	42	34	28	45
160	6	460	128	28	30	31	29	22	18	33	36	40	41	41	33	26	44	41	44	49	47	39	31	50
	10	640	178	30	32	33	31	25	20	35	39	42	44	43	35	28	46	43	46	52	49	41	34	53
	3	400	111	19	23	25	24	17	15	27	30	35	35	33	27	21	37	36	40	41	40	34	26	43
200	6	730	203	26	30	31	29	24	15	33	36	40	42	39	33	28	43	41	44	47	45	39	31	49
	10	1050	292	30	35	35	34	28	20	37	40	45	46	44	37	32	48	45	48	50	48	42	36	52
	3	575	160	20	23	24	21	15	15	25	30	34	36	35	25	22	38	38	42	44	41	36	25	45
250	6	1050	292	25	28	30	28	23	18	32	36	39	40	40	32	27	43	41	45	48	44	39	26	49
	10	1500	417	28	32	34	33	29	23	37	40	42	44	43	37	31	46	43	48	49	48	42	27	51
	3	1050	292	21	26	30	28	20	15	29	33	35	38	36	30	22	39	39	43	45	44	34	27	47
315	6	1800	500	29	35	36	34	24	16	37	37	41	43	42	36	24	45	44	48	49	48	40	31	51
	10	2450	681	32	38	37	36	25	16	39	38	42	45	44	37	24	47	45	49	50	48	42	32	52
	3	1600	444	36	40	40	38	27	18	41	38	43	46	44	38	27	48	43	48	50	49	42	31	52
400	6	2900	806	38	40	43	41	29	25	44	41	47	48	47	42	29	50	47	53	53	52	45	34	55
	10	4200	1167	44	45	46	44	36	27	47	45	51	52	51	46	33	54	50	55	56	54	48	38	58

VMPR-RS - Einfügungsdämpfung |

VMPR-RS - EINFÜGUNGSDÄMPFUNG

Mit Rohrschalldämpfer (-RS)

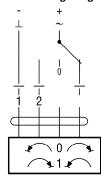
										D _e (dE	3/Okt)							
						P=	50							P=:	100			
						f _m (Hz)							f _m (Hz)			_
			63	125	250	200	1000	2000	4000	8000	63	125	250	200	1000	2000	4000	8000
		80	4	7	12	18	26	33	17	15	6	16	18	23	39	36	33	20
	•	100	3	6	10	16	22	30	14	13	5	13	15	19	33	31	25	15
	-	125	3	5	9	14	20	24	12	11	4	10	13	18	29	25	18	12
000	>	160	2	4	7	12	18	19	10	9	3	9	11	16	26	19	14	10
L1=500	Ŋ.	200	1	3	6	10	16	15	7	6	3	7	9	15	25	17	11	9
		250	1	2	4	9	15	11	4	3	2	6	8	14	23	15	9	7
	•	315	1	1	3	8	12	8	3	2	2	4	7	13	20	12	7	5
		400	1	1	3	7	10	7	2	1	1	3	6	12	18	9	4	4
		80	5	14	27	42	50	50	40	24	9	22	30	45	50	50	50	39
		100	5	12	23	36	50	50	34	21	7	19	28	40	50	50	50	32
		125	4	11	21	33	50	50	32	19	6	17	25	34	49	50	36	22
950	~	160	3	8	15	23	34	29	18	14	5	12	18	28	41	48	26	16
L1=950	N.	200	2	5	11	18	30	24	14	11	4	10	15	24	35	41	22	13
		250	2	4	9	15	27	18	11	9	3	8	13	20	31	35	20	11
		315	1	3	6	12	24	14	7	6	2	6	8	15	26	27	14	8
		400	1	2	4	10	19	10	4	4	2	4	6	11	23	20	10	6
		80	8	22	44	50	50	50	46	28	-	-	-	-	-	-	-	-
		100	8	22	44	50	50	50	46	28	-	-	-	-	-	-	-	-
		125	7	20	39	50	50	50	39	25	-	-	-	-	-	ı	-	-
L1=1450	NN N	160	6	14	27	42	48	42	26	18	6	17	30	47	50	49	30	18
L1=1	Ź	200	4	6	15	29	42	30	17	14	5	14	26	42	50	46	28	16
		250	3	4	10	20	37	24	13	11	4	12	22	36	46	43	25	14
		315	2	4	8	16	34	19	10	7	2	8	15	27	35	32	17	9
		400	1	2	6	15	27	13	8	5	2	6	12	23	30	25	13	7
		80	9	30	50	50	50	50	50	38	-	-	-	-	-	-	-	-
		100	9	30	50	50	50	50	50	38	-	-	-	-	-	-	-	-
		125	8	26	50	50	50	50	50	33	-	-	-	-	-	-	-	-
L1=1950	WN	160	-	-	-	-	-	-	-	-	8	23	39	50	50	50	41	25
L1=1	Ź	200	-	-	-	-	-	-	-	-	7	19	34	50	50	50	37	21
		250	-	-	-	-	-	-	-	-	6	16	29	48	50	49	33	18
		315	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

VMPQ - Reglerstellung Teil 1 |

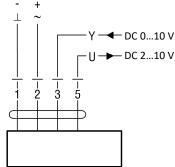
VMPQ - REGLERSTELLUNG TEIL 1

(200x100 bis 400x400)

•		<u>v</u>				Nennweite	NW (B x H)				V*
			200x100	300x100	300x150	300x200	400x200	400x250	400x300	400x400	
	1	(m³/h)	200	325	250	225	500	850	700	900	2
		[l/s]	56	90	69	63	139	236	194	250	2
	2	(m³/h)	275	425	375	450	700	1100	1100	1400	2,9
		[l/s]	76	118	104	125	194	306	306	389	2,9
	3	(m³/h)	375	500	525	700	900	1450	1500	1800	3,8
		[l/s]	104	139	146	194	250	403	417	500	3,0
	4	(m³/h)	475	600	675	900	1100	1800	1850	2300	4,7
S		[l/s]	132	167	188	250	306	500	514	639	4,7
Reglerstellung RS	5	(m³/h)	550	700	850	1050	1300	2100	2200	2700	5,6
<u> </u>		[l/s]	153	194	236	292	361	583	611	750	5,0
erste	6	(m³/h)	600	775	1000	1250	1450	2400	2500	3100	6,5
egle		[l/s]	167	215	278	347	403	667	694	861	0,5
"	7	(m³/h)	650	850	1150	1400	1600	2700	2800	3400	7,3
		[l/s]	181	236	319	389	444	750	778	944	7,3
	8	(m³/h)	700	925	1275	1500	1750	2900	3100	3800	8,2
	•	[l/s]	194	257	354	417	486	806	861	1056	0,2
	9	(m³/h)	750	1000	1400	1650	1900	3100	3400	4200	0.1
		[l/s]	208	278	389	458	528	861	944	1167	9,1
	10	(m³/h)	800	1075	1500	1800	2050	3200	3600	4400	10
	10	[l/s]	222	299	417	500	569	889	1000	1222	10


In Regelstellung 1 und 2 muss $\Delta p>100$ Pa sein.

Schaltplan Regler


mit Stellantrieb elektrisch:

- --- 3-Punkt-Regelung
 - (Standard: VMPQ-...-E044; 24V, VMPQ-...-E045; 230V)
- --- stetige Regelung
 - (VMPQ-...-E046; 24V, VMPQ-...-E016; 230V)

3-Punkt-Regelung

stetige Regelung - +

^{* =} Ansteuerung in Volt für VMPQ mit E016 und E046

VMPQ - Reglerstellung Teil 2 |

Stand: 2020-10-01 | Seite 18

VMPQ - REGLERSTELLUNG TEIL 2

(500x200 bis 600x400)

(v				Nennweite	NW (B x H)				V*
			500x200	500x250	500x300	500x400	600x200	600x250	600x300	600x400	
	1	(m³/h)	650	950	1200	1300	450	1200	1700	1900	2
	1	[l/s]	181	264	333	361	125	333	472	528	2
	2	(m³/h)	1000	1300	1650	2000	1000	1500	2100	2500	2,9
		[l/s]	278	361	458	556	278	417	583	694	2,3
	3	(m³/h)	1300	1600	2100	2600	1450	1950	2600	3400	3,8
	3	[l/s]	361	444	583	722	403	542	722	944	3,0
	4	(m³/h)	1600	2100	2600	3200	1950	2350	3200	4300	4,7
S	-	[l/s]	444	583	722	889	542	653	889	1194	4,7
Reglerstellung RS	5	(m³/h)	1950	2500	3050	3900	2400	2800	3700	5000	5,6
		[l/s]	542	694	847	1083	667	778	1028	1389	3,0
erst	6	(m³/h)	2200	2850	3500	4400	2800	3200	4150	5800	6,5
egle		[l/s]	611	792	972	1222	778	889	1153	1611	0,5
"	7	(m³/h)	2450	3200	3850	4900	3200	3600	4600	6400	7,3
		[l/s]	681	889	1069	1361	889	1000	1278	1778	7,3
	8	(m³/h)	2650	3550	4200	5300	3500	3950	5000	7000	8,2
	•	[l/s]	736	986	1167	1472	972	1097	1389	1944	6,2
	9	(m³/h)	2900	3900	4550	5800	3800	4300	5400	7600	9,1
	9	[l/s]	806	1083	1264	1611	1056	1194	1500	2111	3,1
	10	(m³/h)	3100	4200	4800	6200	4100	4600	5800	8200	10
	10	[l/s]	861	1167	1333	1722	1139	1278	1611	2278	10

In Regelstellung 1 und 2 muss $\Delta p>100$ Pa sein.

^{* =} Ansteuerung in Volt für VMPQ mit E016 und E046

VMPQ - Strömungsrauschen Teil 1 |

Stand: 2020-10-01 | Seite 19

VMPQ - STRÖMUNGSRAUSCHEN TEIL 1

(200x100 bis 400x400)

(200x100 b BxH	RS	/	V		Δ	o _{st} =	100 I	Pa				ΔΙ	o _{st} =	250 I	Pa				Δ	o _{st} =	500	Pa		
					L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)		
			_		_	f _m (Hz)		_	(A)			f _m (Hz)	_		(A)			f _m (Hz)			(A)
		(m³/h)	[s/1]	125	250	200	1000	0007	4000	[(A)8b] hw1]	125	250	200	1000	2000	4000	[(A)8b] hw1]	125	250	009	1000	0007	4000	Lwa [dB(A)]
200	3	375	104	44	44	43	43	43	42	49	51	51	51	51	50	50	57	57	57	56	56	56	56	62
х	6	600	167	50	50	49	49	49	49	55	57	57	56	56	56	56	62	62	62	61	61	61	61	67
100	10	800	222	53	53	52	52	52	52	58	60	60	59	59	60	59	66	65	65	64	64	64	64	70
300	3	500	139	45	45	43	43	43	42	49	52	51	51	51	51	51	57	58	58	57	57	57	57	63
х	6	775	215	50	50	49	49	49	49	55	57	56	56	56	56	56	62	62	62	61	61	61	61	67
100	10	1075	299	53	53	53	53	53	52	59	60	60	60	60	60	60	66	66	65	65	65	65	65	71
300	3	525	146	42	42	42	41	41	35	46	50	49	49	49	49	46	54	57	57	57	56	56	56	62
X	6	1000	278	50	50	50	49	49	46	55	56	56	56	56	56	55	62	62	62	61	61	61	61	67
150	10	1500	417	54	54	54	54	53	52	59	61	61	61	61	61	60	67	66	66	66	66	65	65	72
300	3	700	194	43	43	43	43	40	33	46	52	51	51	51	51	45	56	57	58	58	56	56	55	62
x	6	1250	347	50	50	50	49	50	44	55	57	57	56	56	56	53	62	63	62	62	61	62	61	68
200	10	1800	500	54	54	54	54	54	49	59	62	61	61	61	61	59	67	67	66	66	66	66	65	72
400	3	900	250	46	46	45	45	41	33	49	51	50	53	53	51	42	57	56	57	59	60	56	49	63
X	6	1450	403	51	50	53	52	48	39	56	53	56	58	59	57	48	62	60	62	63	62	60	54	66
200	10	2950	569	56	56	55	56	55	47	59	56	55	61	62	58	54	65	63	65	65	66	63	61	69
400	3	1450	403	48	48	48	47	44	37	51	56	54	54	54	54	46	59	61	61	61	61	60	56	66
x 250	6	2400	667	54	54	54	53	53	45	58	61	60	60	60	60	54	65	66	66	65	65	65	62	71
250	10	3200	889	57	57	57	56	56	49	61	64	64	64	64	63	60	69	69	69	69	69	68	66	74
400	3	1500	417	47	47	47	46	41	33	50	55	54	54	54	51	44	58	61	61	61	61	60	53	66
х 300	6	2500	694	53	54	53	53	50	42	57	61	60	60	60	59	52	65	66	66	66	66	65	59	71
300	10	3600	1000	58	57	57	57	55	47	61	65	64	64	64	64	58	69	70	70	69	69	69	64	74
400	3	1800	500	47	47	47	45	37	30	49	55	55	55	54	48	40	57	62	62	61	61	58	50	65
х 400	6	3100	861	53	53	53	52	46	38	55	61	60	60	60	55	46	63	67	67	65	65	64	56	70
400	10	4400	1222	58	58	57	56	52	44	60	65	64	64	64	61	53	68	70	70	69	69	68	61	74

VMPQ - Strömungsrauschen Teil 2 |

Stand: 2020-10-01 | Seite 20

VMPQ - STRÖMUNGSRAUSCHEN TEIL 2

(500x200 bis 600x400)

(500x200 b			ı <u>.</u>	ı																				
BxH	RS	'	7				100							250						p _{st} =				
					L		3/Ok	t)				L		3/Ok	t)				L	w (dE		t)		_
						f _m (Hz)		ı	(A)			f _m ((Hz)	ı		(A)			f _m (Hz)			(A)
		(m³/h)	-	<u>ب</u>			8	8	00	LwA [dB(A)]	5			8	00	8	L _{wA} [dB(A)]	<u>ب</u>			8	8	8	L _{wA} [dB(A)]
		u)	[s/]	125	250	200	1000	2000	4000	Lw,	125	250	200	1000	2000	4000	Lw,	125	250	200	1000	2000	4000	Lw,
500	3	1300	36	47	47	46	46	45	37	51	54	54	54	54	53	48	59	61	60	60	60	60	57	65
х	6	2200	611	53	53	53	52	52	47	57	60	59	59	59	59	56	64	66	65	64	64	65	63	70
200	10	3100	861	57	57	57	57	56	52	62	61	64	64	64	64	61	69	69	69	68	68	68	68	74
500	3	1600	444	48	48	47	47	43	35	51	55	55	55	55	54	46	60	62	62	61	61	61	56	66
х	6	2850	792	55	55	54	54	53	46	59	61	61	61	61	60	55	66	66	66	66	66	66	62	71
250	10	4200	1167	59	58	58	58	58	51	63	66	66	66	65	65	62	71	71	71	70	70	70	68	76
500	3	2100	583	47	47	46	46	39	31	49	54	54	54	54	51	43	58	62	62	61	61	61	53	66
х	6	3500	972	52	52	52	52	48	40	55	59	59	58	58	57	49	63	65	65	65	65	65	57	70
300	10	4800	1333	57	57	57	57	54	46	61	63	63	63	63	63	56	68	68	68	68	68	68	63	73
500	3	2600	722	50	50	50	48	40	32	52	57	57	57	56	51	43	60	64	64	63	63	60	52	67
х	6	4400	1222	56	56	56	56	50	42	59	63	63	62	62	59	51	66	68	68	68	67	66	59	72
400	10	6200	1722	60	59	59	59	54	46	62	67	66	66	66	64	57	70	72	71	71	71	71	64	76
600	3	1450	403	47	47	46	46	44	37	50	55	55	54	54	54	47	59	61	61	61	61	60	58	66
x	6	2800	778	54	54	54	54	54	48	59	61	61	61	60	60	57	66	66	66	66	66	65	65	72
200	10	4100	1139	58	58	58	57	57	52	62	65	65	65	64	64	62	71	70	70	70	69	69	69	76
600	3	1950	542	48	48	48	48	44	37	52	56	56	55	55	54	47	60	62	62	62	62	61	57	67
x	6	3200	889	54	54	54	54	53	46	59	61	61	60	60	60	55	65	66	66	66	66	65	63	71
250	10	4600	1278	59	58	58	58	58	51	63	66	66	65	65	65	61	70	71	71	70	70	70	68	76
600	3	2600	722	51	51	51	50	45	37	54	59	58	57	58	56	47	62	63	63	63	63	62	56	68
x	6	4150	1153	56	56	56	56	53	46	60	63	63	63	62	62	54	67	68	68	68	68	67	62	73
300	10	5800	1611	60	59	59	59	58	50	63	67	67	67	66	66	60	71	72	72	71	71	71	67	76
600	3	3400	944	51	51	51	49	43	35	53	58	58	58	58	52	44	61	65	65	65	64	62	54	68
x	6	5800	1611	58	58	58	57	52	44	61	65	64	64	64	61	53	68	71	70	70	70	68	60	74
400	10	8200	2278	62	62	62	62	57	49	65	70	69	69	69	67	60	73	75	74	74	74	74	66	79
		ļ																						

VMPQ - Abstrahlgeräusch Teil 1 |

Stand: 2020-10-01 | Seite 21

VMPQ - ABSTRAHLGERÄUSCH TEIL 1

(200x100 bis 400x400)

		0x400)									1							1						
ВхН	RS	'	V			-	100 F							250 F						p _{st} =				
					L		3/Ok	t)				L		3/Ok	t)				L	w (dE		t)		
			ī	i	ı i	fm	(Hz)		ī	(A)			fm	(Hz)	i i		3(A)			fm '	(Hz)	ī	Ī	3(A)
		(m³/h)		2	0	0	00	00	8	Lwa [dB(A)]	<u>ر</u>	0	0	00	00	00	LwA [dB(A)]	<u>بر</u>			8	8	00	Lwa [dB(A)]
		Œ)	[s/]]	125	250	200	1000	2000	4000	Lw,	125	250	200	1000	2000	4000	Lw,	125	250	200	1000	2000	4000	Lw,
200	3	375	104	27	29	32	32	31	26	37	35	37	40	40	39	34	45	42	44	46	46	46	41	51
Х	6	600	167	32	35	37	37	36	30	42	40	43	45	45	44	38	50	46	49	51	51	50	44	56
100	10	800	222	35	40	41	40	39	34	45	43	48	49	48	47	42	53	50	55	56	54	54	49	60
300	3	500	139	29	32	34	34	33	28	39	37	40	42	42	41	36	47	43	46	48	48	47	42	53
х	6	775	215	33	36	38	38	37	31	43	42	45	47	47	46	40	52	47	50	52	52	51	45	57
100	10	1075	299	37	42	43	41	41	36	47	45	50	51	50	49	44	55	51	56	57	55	55	50	61
300	3	525	146	29	31	33	33	33	28	38	34	36	39	38	38	33	43	42	44	47	46	46	41	51
X	6	1000	278	33	36	38	38	37	31	43	40	43	45	45	44	38	50	46	49	51	51	50	44	56
150	10	1500	417	37	42	43	41	41	36	47	45	50	51	49	49	44	55	50	55	56	54	54	49	60
300	3	700	194	29	31	33	33	33	27	38	34	36	39	39	38	33	44	42	44	47	47	46	41	52
x	6	1250	347	33	37	38	38	37	31	43	40	43	45	44	44	38	49	46	50	52	51	50	45	56
200	10	1800	500	37	42	43	41	41	36	47	45	50	51	49	49	44	55	51	56	57	55	55	50	61
400	3	900	250	30	33	34	35	33	26	38	35	38	45	45	42	34	47	41	45	48	50	45	37	53
х	6	1450	403	37	38	43	44	40	34	46	36	41	48	49	45	36	52	44	50	52	53	49	42	56
200	10	2950	569	42	44	45	46	45	39	49	41	44	49	52	48	42	55	48	52	55	56	53	48	59
400	3	1450	403	32	34	36	36	36	30	41	38	42	44	43	42	37	48	45	50	51	49	49	44	55
х	6	2400	667	38	41	43	43	42	36	48	44	49	50	48	48	43	54	50	55	56	54	54	49	60
250	10	3200	889	40	45	46	44	44	40	50	48	53	54	52	52	47	58	54	59	60	58	58	53	64
400	3	1500	417	30	32	35	34	34	30	39	37	40	42	42	41	35	47	45	48	50	50	49	43	55
х	6	2500	694	36	38	41	40	40	36	45	43	48	49	48	47	42	53	49	54	55	54	53	48	59
300	10	3600	1000	41	43	46	45	45	41	50	48	53	54	52	52	46	57	53	58	59	57	57	52	63
400	3	1800	500	29	31	34	33	33	29	38	36	39	41	41	40	34	46	44	49	50	48	48	43	54
х	6	3100	861	35	37	40	39	39	35	44	42	46	47	46	45	40	51	49	54	55	53	53	48	59
400	10	4400	1222	40	42	45	44	44	40	49	47	52	53	51	51	46	57	53	58	59	57	57	52	63

VMPQ - Abstrahlgeräusch Teil 2 |

Stand: 2020-10-01 | Seite 22

VMPQ - ABSTRAHLGERÄUSCH TEIL 2

(500x200 bis 600x400)

(500x200	טוט טנ										,													
BxH	RS	'	V		ΔΙ	p _{st} =	100 I	Pa				ΔΙ	p _{st} =	250 I	Pa				Δ	p _{st} =	500 I	Pa		
					L	w (dE	3/Ok	t)		_		L	w (dE	3/Ok	t)				L	w (dE	3/Ok	t)		
			•			fm	(Hz)			<u> </u>			fm	(Hz)		'n	(A)			fm	(Hz)			(A)
		(m³/h)				_	0	0	0	Lwa [dB(A)]				0	0	0	Lwa [dB(A)]				0	0	0	Lwa [dB(A)]
		eس)	[s/ _]]	125	250	500	1000	2000	4000	LwA	125	250	200	1000	2000	4000	LwA	125	250	200	1000	2000	4000	LwA
500	3	1300	36	31	33	36	35	35	31	40	39	41	44	43	43	39	48	45	50	51	49	49	44	55
х	6	2200	611	37	39	42	41	41	35	46	44	49	50	48	48	44	54	49	55	55	53	53	48	59
200	10	3100	861	41	44	46	46	45	38	50	49	54	55	53	53	47	58	53	58	59	57	57	52	63
500	3	1600	444	31	33	36	35	35	31	40	39	42	44	43	43	37	48	45	50	51	49	49	44	55
x	6	2850	792	39	41	44	43	43	39	48	45	50	51	49	49	44	55	50	55	56	54	54	49	60
250	10	4200	1167	43	45	48	47	47	43	52	50	55	56	54	54	49	60	54	59	60	58	58	53	64
500	3	2100	583	30	32	35	34	34	29	39	38	40	43	42	42	36	47	45	50	51	49	49	44	55
x	6	3500	972	35	38	40	40	39	33	45	43	45	48	47	47	43	52	48	53	54	52	52	47	58
300	10	4800	1333	40	43	45	45	44	40	50	48	52	53	51	52	47	57	52	57	58	56	56	51	62
500	3	2600	722	32	34	37	36	36	32	41	38	42	44	43	42	37	48	46	51	52	50	50	45	56
х	6	4400	1222	39	41	44	43	43	39	48	45	50	51	49	49	44	55	50	55	56	54	54	49	60
400	10	6200	1722	41	44	46	46	45	39	51	50	55	56	54	54	49	60	55	60	61	59	59	54	65
600	3	1450	403	30	33	35	35	34	30	40	38	41	43	43	42	37	48	46	51	52	50	50	45	56
x	6	2800	778	38	41	43	43	42	37	48	45	48	50	49	49	44	54	51	57	57	55	55	50	61
200	10	4100	1139	42	44	47	46	46	42	54	49	54	55	53	53	48	62	54	59	60	58	58	53	66
600	3	1950	542	33	35	37	36	36	32	41	39	43	45	43	43	40	49	46	51	52	50	50	45	56
x	6	3200	889	39	41	44	43	43	39	48	44	49	50	48	48	46	54	50	55	56	54	54	49	60
250	10	4600	1278	43	45	48	47	47	43	52	49	54	55	53	53	48	59	55	60	61	59	59	54	65
600	3	2600	722	35	37	40	39	39	35	44	41	45	47	45	45	39	50	48	52	54	52	52	48	58
х	6	4150	1153	40	42	45	44	44	40	49	46	51	52	50	50	45	56	52	57	58	56	57	51	62
300	10	5800	1611	44	46	49	48	48	44	53	50	55	56	54	54	49	60	55	60	61	59	59	54	65
600	3	3400	944	32	35	37	37	36	31	42	41	45	46	45	45	39	50	48	53	54	52	52	47	58
х	6	5800	1611	39	42	44	44	43	38	49	47	52	53	52	51	46	57	47	52	53	52	51	46	57
400	10	8200	2278	45	47	50	49	49	45	56	53	59	60	58	58	52	65	58	63	64	62	62	57	69

VMPQ - Abstrahlgeräusch mit Dämmschale Teil 1 |

VMPQ - ABSTRAHLGERÄUSCH MIT DÄMMSCHALE TEIL 1

(200x100 bis 400x400)

(200x100 bis 400x400)																								
BxH	RS	\	7				100 F							250 F						p _{st} =				
					L	•••	3/Okt	:)			L _w (dB/Okt)								L	.w (dE	3/Ok	t)		
			fm (Hz)				<u>(A</u>	fm (Hz)						(A)]			fm	(Hz)		-	(A)			
		(m³/h)	_				0	0	0	LwA [dB(A)]	۱.,			0	00	0	Lwa [dB(A)]	١.,			9	9	0	Lwa [dB(A)]
		(س _ة	[s/]]	125	250	200	1000	2000	4000	LwA	125	250	200	1000	2000	4000	LwA	125	250	200	1000	2000	4000	LwA
200	3	375	104	22	26	29	26	22	15	30	30	34	37	34	30	22	38	37	41	43	40	37	29	45
х	6	600	167	27	32	34	31	27	18	35	35	40	42	39	35	26	43	41	46	48	45	41	32	49
100	10	800	222	30	37	38	34	30	22	39	38	45	46	42	38	30	47	45	52	53	48	45	37	54
300	3	500	139	24	29	31	28	24	16	32	32	37	39	36	32	24	40	38	43	45	42	38	30	46
х	6	775	215	28	33	35	32	28	19	36	37	42	44	41	37	28	45	42	47	49	46	42	33	50
100	10	1075	299	32	39	40	35	32	24	41	40	47	48	44	40	32	49	46	53	54	49	46	38	55
300	3	525	146	24	28	30	27	24	16	32	29	33	36	32	29	21	37	37	41	44	40	37	29	45
х	6	1000	278	28	33	35	32	28	19	36	35	40	42	39	35	26	43	41	46	48	45	41	32	49
150	10	1500	417	32	39	40	35	32	24	41	40	47	48	43	40	32	49	45	52	53	48	45	37	54
300	3	700	194	24	28	30	27	24	15	32	29	33	36	33	29	21	37	37	41	44	41	37	29	45
х	6	1250	347	28	34	35	32	28	19	36	35	40	42	38	35	26	43	41	47	49	45	41	33	50
200	10	1800	500	32	39	40	35	32	24	41	40	47	48	43	40	32	49	46	53	54	49	46	38	55
400	3	900	250	25	29	31	29	27	24	34	30	33	38	38	32	24	41	36	40	43	45	41	36	48
х	6	1450	403	32	36	38	37	31	25	40	33	39	43	43	39	27	46	39	42	46	47	45	32	51
200	10	2950	569	36	38	38	40	37	28	43	38	38	45	46	41	40	49	43	46	50	51	48	39	54
400	3	1450	403	27	31	33	30	27	18	35	33	39	41	37	33	25	42	40	47	48	43	40	32	49
х	6	2400	667	33	38	40	37	33	24	41	39	46	47	42	39	31	48	45	52	53	48	45	37	54
250	10	3200	889	35	42	43	38	35	28	44	43	50	51	46	43	35	52	49	56	57	52	49	41	58
400	3	1500	417	25	29	32	28	25	18	33	32	37	39	36	32	23	40	40	45	47	44	40	31	48
х	6	2500	694	31	35	38	34	31	24	39	38	45	46	42	38	30	47	44	51	52	48	44	36	53
300	10	3600	1000	36	40	43	39	36	29	44	43	50	51	46	43	34	52	48	55	56	51	48	40	57
400	3	1800	500	24	28	31	27	24	17	32	31	36	38	35	31	22	39	39	46	47	42	39	31	48
х	6	3100	861	30	34	37	33	30	23	38	37	43	44	40	36	28	45	44	51	52	47	44	36	53
400	10	4400	1222	35	39	42	38	35	28	43	42	49	50	45	42	34	51	48	55	56	51	48	40	57
	_				_	_	_	_	_		_		_	_					_	_	_		_	

VMPQ - Abstrahlgeräusch mit Dämmschale Teil 2 |

VMPQ - ABSTRAHLGERÄUSCH MIT DÄMMSCHALE TEIL 2

(500x200 bis 600x400)

(300,200	500x200 bis 600x400)																							
ВхН	RS	١	7		Δ	o _{st} =	100 F	Pa				Δ	p _{st} =	250 F	Pa				Δ	p _{st} =	500 F	Pa		
					L	w (dE	3/Ok	t)			L _W (dB/Okt)								L	L _w (dB/Okt)				
			fm (Hz)				(A)			fm	(Hz)			(A)]		fm (Hz)				(A)				
		(૫/ _ε ɯ)	[s/i]	125	250	200	1000	2000	4000	L _{wA} [dB(A)]	125	250	200	1000	2000	4000	[(A)Bb [vw]	125	250	200	1000	2000	4000	LwA [dB(A)]
500	3	1300	36	26	30	33	29	26	19	34	34	38	41	37	34	27	42	40	47	48	43	40	32	49
х	6	2200	611	32	36	39	35	32	23	40	39	46	47	42	39	32	48	44	52	52	47	44	36	53
200	10	3100	861	36	41	43	40	36	26	44	44	51	52	47	44	35	53	48	55	56	51	48	40	57
500	3	1600	444	26	30	33	29	26	19	34	34	39	41	37	34	25	42	40	47	48	43	40	32	49
х	6	2850	792	34	38	41	37	34	27	42	40	47	48	43	40	32	49	45	52	53	48	45	37	54
250	10	4200	1167	38	42	45	41	38	31	46	45	52	53	48	45	37	54	49	56	57	52	49	41	58
500	3	2100	583	25	29	32	28	25	17	33	33	37	40	36	33	24	41	40	47	48	43	40	32	49
х	6	3500	972	30	35	37	34	30	21	38	38	42	45	41	38	31	46	43	50	51	46	43	35	52
300	10	4800	1333	35	40	42	39	35	28	43	43	49	50	45	43	35	51	47	54	55	50	47	39	56
500	3	2600	722	27	31	34	30	27	20	35	33	39	41	37	33	25	42	41	48	49	44	41	33	50
х	6	4400	1222	34	38	41	37	34	27	42	40	47	48	43	40	32	49	45	52	53	48	45	37	54
400	10	6200	1722	36	41	43	40	36	27	44	45	52	53	48	45	37	54	50	57	58	53	50	42	59
600	3	1450	403	25	30	32	29	25	18	33	33	38	40	37	33	25	41	41	48	49	44	41	33	50
х	6	2800	778	33	38	40	37	33	25	41	40	45	47	43	40	32	48	46	54	54	49	46	38	55
200	10	4100	1139	37	40	44	40	37	29	45	44	51	52	47	44	36	54	49	56	57	52	49	41	59
600	3	1950	542	28	32	34	30	27	20	35	34	40	42	37	34	28	43	41	48	49	44	41	33	50
х	6	3200	889	34	38	41	37	34	27	42	39	46	47	42	39	34	48	45	52	53	48	45	37	54
250	10	4600	1278	38	42	45	41	38	31	46	44	51	52	47	44	36	53	50	57	58	53	50	42	59
600	3	2600	722	30	34	37	33	30	23	38	36	42	44	39	36	27	45	43	49	51	46	43	36	52
х	6	4150	1153	35	39	42	38	35	28	43	41	48	49	44	41	33	50	47	54	55	50	48	39	56
300	10	5800	1611	39	43	46	42	39	32	47	45	52	53	48	45	37	54	50	57	58	53	50	42	59
600	3	3400	944	27	32	34	31	27	19	35	36	42	43	39	36	27	44	43	50	51	46	43	35	52
х	6	5800	1611	34	39	41	38	34	26	42	42	49	50	46	42	34	51	48	56	57	51	48	41	57
400	10	8200	2278	39	43	46	42	38	32	48	47	54	55	50	47	39	57	52	59	60	55	52	44	62

VMPQ-ZSQ - EINFÜGUNGSDÄMPFUNG

mit Mineralwolle-Schalldämpfer (-ZSQ) (nur VMPQ mit Kulissen Typ MWK-OB)

В	D _e [dB/Okt]										
(mm)	f _m (Hz)										
	E9	125	250	200	1000	2000	4000	0008			
200	1	3	9	18	36	37	22	13			
300	1	2	4	8	15	14	9	6			
400	1	4	11	19	25	20	11	7			
500	1	4	7	8	15	15	8	5			
600	1	3	9	18	36	37	22	13			

BERECHNUNGSFORMELN

Berechnung des Volumenstroms

 $\dot{v} = v_K x F x 3600$

wobei : v_K (m/s) = Kanalgeschwindigkeit | F (m²) = Fläche

Beispiel für Durchmesser 200 mm

 $v_K = 4 \text{ m/s}$

 $F = 0.0314 \text{ m}^2$ $\dot{V} = V_k \times F \times 3600 = 4 \text{ m/s} \times 0.0314 \text{ m}^2 \times 3600$

 $\dot{V} = 452 \text{ m}^3/\text{h}$

VMPR / VMPQ

TECHNISCHE DOKUMENTATION

VMPQ-ZSQ - Einfügungsdämpfung | Legende

LEGENDE

ΔL_W	[dB/Okt]	=	Pegelkorrekturwert/Oktave
Δр	(Pa)	=	Druckdifferenz
$\Delta p_{st\;min}$	(Pa)	=	statische Mindest-Druckdifferenz
Δp_{st}	(Pa)	=	Druckverlust
Δp_{W}	(Pa)	=	Wirkdruck
Α	(m²)	=	Anströmfläche (B x H)
В	(mm)	=	Breite
D_e	[dB/Okt]	=	Einfügungsdämpfung
EW_{Vmax}	(m^3/h)	=	Einstellwert-Maximal-Luftvolumen
f_{m}	(Hz)	=	Oktavband-Mittenfrequenz
Н	(mm)	=	Höhe
K		=	Kulissenstärke
KA	(-x-)	=	Kulissenanzahl
KF	(-x-)	=	Korrekturfaktor
LOA		=	Lochanzahl
L _{W abst}	[dB/Okt]	=	Abstrahlgeräusch/Oktave
L_{W}	[dB/Okt]	=	Schalleistungspegel/Oktave
			$(L_W = L_{W1} + KF)$
L_{W1}	[dB/Okt]	=	Schalleistungspegel/Oktave bezoger
			auf 1 m² Anströmfläche
L_{WA}	[dB(A)]	=	A-bewerteter Schalleistungspegel
			$(L_{WA} = L_{WA1} + KF)$
NW	(mm)	=	Nennweite
S			Spaltbreite
V	$(m^3/h) [l/s]$	=	Luftvolumen
V_{ZU}	$(m^3/h) [l/s]$	=	Zuluftvolumenstrom
V_{max}	$(m^3/h) [l/s]$	=	Maximal-Luftvolumen
V_{min}	$(m^3/h) [l/s]$	=	Mindest-Luftvolumen
V_{Nenn}	$(m^3/h) [l/s]$	=	Nenn-Luftvolumen
V	$(m^3/h) [l/s]$	=	Volumenstrom
\mathbf{v}_{K}	(m/s)	=	Kanalgeschwindigkeit
øD	(-)	=	hydraulischer Durchmesser
Q	(kg/m ³)	=	Dichte
RS		=	Reglerstellung

Bestellschlüssel VMPR

Stand: 2020-10-01 | Seite 26

BESTELLSCHLÜSSEL VMPR

01	02	03	04	05	06	07
Тур	Größe	Werkstoff	Volumenstrom V _{kon}	Kanalanschluss	Dämmschale	Stellantrieb
Beispiel						
VMPR	-125	-SV	-0180	-GD1	-DS2	-E000

Muster

VMPR-125-SV-0180-GD1-DS2-E000

Volumenstromregler Typ VMPR, runde Bauform | Nennweite NW 125 | Stahlblech verzinkt | mit Einstellwert V_{kon} =180 m³/h | mit Gummilippendichtung | mit Dämmschale 20 mm | ohne Stellantrieb

BESTELLANGABEN

01 - Typ

VMPR = Volumenstromregler VMPR, runde Bauform

02 - Nennweite

080 = NW 80 mm 100 = NW 100 mm 125 = NW 125 mm 160 = NW 160 mm 200 = NW 200 mm 250 = NW 250 mm 315 = NW 315 mm 400 = NW 400 mm

03 - Material

SV = Stahlblech, verzinkt (Standard)

V2 = Edelstahl V2A, 1.4301 V4 = Edelstahl V4A, 1.4571

DD = DD-Lackierung innen bei Stahlblech verzinkt

${\bf 04}$ - ${\bf Volumenstrom}$ -Einstellwert ${\bf V_{kon}}$ (kundenseitig)

xxxx = Wert muss 4-stellig eingetragen werden

05 - Kanalanschluss

KAO = ohne Gummilippendichtung / ohne Flansch (Standard)

GD1 = mit Gummilippendichtung FF1 = Flach-Flansch, Stahl verzinkt

FF2 = Flach-Flansch, Edelstahl V2A 1.4301

MF1 = METU-Flansch, Stahl verzinkt

MF2 = METU-Flansch, Edelstahl V2A 1.4301

06 - Dämmschale

DS0 = ohne Dämmschale (Standard)

DS2 = Dämmschale 20 mm

FD1 = Flachbettdämmschale 3 mm

07 - Stellantrieb

E000 = kein Stellantrieb (Standard) E044 = LM24A-F; 24 V, 3-Punkt, AUF-ZU E045 = LM230A-F; 230 V, 3-Punkt, AUF-ZU E046 = LM24A-SR-F; 24 V, stetig 2-10 V E016 = LM230A-SR-F; 230 V, stetig 2-10 V

Bitte beachten!

Spannringe, Gegenflansche oder Rohrschalldämpfer sind separat zu bestellen und werden lose mitgeliefert!

Bestellschlüssel VMPQ |

Stand: 2020-10-01 | Seite 27

BESTELLSCHLÜSSEL VMPQ

01	02	03	04	05	06	07
Тур	Breite	Höhe	Material	Volumenstrom V _{kon}	Dämmschale	Stellantrieb
Beispiel						
VMPQ	-200	-100	-DD	-0400	-DS2	-E000

Muster

VMPQ-200-100-DD-0400-DS2-E000

Volumenstromregler Typ VMPQ, eckige Bauform | Breite 200 mm | Höhe 100 mm | Stahlblech verzinkt mit DD-Lackierung | mit Einstellwert V_{kon} = 400 m³/h | mit Dämmschale 20 mm | ohne Stellantrieb

BESTELLANGABEN

01 - Typ

VMPQ = Volumenstromregler VMPQ, eckige Bauform

02 - Breite

200 = 200 mm 300 = 300 mm 400 = 400 mm 500 = 500 mm 600 = 600 mm

03 - Höhe

100 = 100 mm 150 = 150 mm 200 = 200 mm 250 = 250 mm 300 = 300 mm 400 = 400 mm

04 - Material

SV = Stahlblech, verzinkt (Standard)

V2 = Edelstahl V2A, 1.4301 V4 = Edelstahl V4A, 1.4571

DD = DD-Lackierung innen bei Stahlblech verzinkt

05 - Volumenstrom-Einstellwert V_{kon} (kundenseitig)

Xxxx = Wert muss 4-stellig eingetragen werden.

06 - Dämmschale

DS0 = ohne Dämmschale (Standard) DS2 = Dämmschale mit 20 mm

07 - Stellantrieb

E000 = kein Stellantrieb (Standard) E044 = LM24A-F; 24 V, 3-Punkt, Auf-ZU E045 = LM230A-F; 230 V, 3-Punkt, Auf-Zu E046 = LM24A-SR-F; 24 V, stetig 2-10 V E016 = LM230A-SR-F; 230 V, stetig 2-10 V

Bitte beachten!

Schalldämpfer sind separat zu bestellen!

Bestellschlüssel ZSQ |

Stand: 2020-10-01 | Seite 28

VMPR / VMPQ

BESTELLSCHLÜSSEL ZSQ

01	02	03	04	05
Тур	Breite	Höhe	Material	Profilanschlussrahmen
Beispiel				
ZSQ	-0600	-0400	-SV	-M2

Muster

ZSQ-0600-0400-SV-M2

Mineralwolle-Schalldämpfer, eckige Bauform, mit Kulisse Typ MWK-OB | Breite 600 mm | Höhe 400 mm | Stahlblech verzinkt | mit METU-Flansch M2

BESTELLANGABEN

01 - Typ

ZSQ = Mineralwolle-Schalldämpfer, eckige Bauform, mit Kulissen Typ MWK-OB

02 - Breite

xxxx = Wert muss 4-stellig eingetragen werden (0200 bis 0600 mm)

03 - Höhe

xxxx = Wert muss 4-stellig eingetragen werden (0100 bis 0400 mm)

04 - Material

SV = Stahlblech verzinkt

05 - Profilanschluss

M2 = Metu-Profil M2 für VMPQ

AUSSCHREIBUNGSTEXT VMPR

Runde Ausführung

Mechanischer Volumenstromregler Typ VMPR, in runder Bauform, lageunabhängig einbaubar, für konstante Volumenstromregelung bis max. 1000 Pa Differenzdruck, für Rohranschluss nach DIN EN 1506. Gehäuse und Regelklappe aus Stahlblech verzinkt (-SV), Regelgehäuse aus Kunststoff.

Fabrikat: SCHAKO Typ VMPR

KI\A/	
INVV	

Gehäuse und Regelklappe (gegen Mehrpreis) aus:

- --- Stahlblech verzinkt mit DD-Lackierung (-DD)
- --- Edelstahl 1.4301 (-V2)
- --- Edelstahl 1.4571 (-V4)

Regelgehäuse (gegen Mehrpreis) aus:

- --- Edelstahl 1.4301 (-V2)
- --- Edelstahl 1.4571 (-V4)

Zubehör (gegen Mehrpreis):

- --- Dämmschale (-DS2), aus schalldämmendem Material 20 mm, nicht brennbar nach DIN 4102-17, mit Blechummantelung.
- --- Flachbett-Dämmschale (-FD1), aus schalldämmendem Material 3 mm, mit Blechummantelung.
- --- METU-Flansch (-MF1/-MF2), beidseitig, Rohrflansch AF.
- --- Gegenflansch (-GF) (Paar), lose, beidseitig, zu METU-Flansch.
- --- Spannring (-SR) (Paar), lose, zum Verbinden von METU-Flansch und Gegenflansch.
- --- Flach-Flansch (-FF1/-FF2), beidseitig, nach DIN 24 154 / 5, hergestellt aus dem Material aus dem das Gehäuse besteht.
- --- Gummilippendichtung (-GD1), beidseitig, aus Spezial-gummi, silikonfrei.
- --- Rohrschalldämpfer (-RS), Außenmantel und Lochblech aus Stahlblech verzinkt, gegen Mehrpreis aus Edelstahl 1.4301 (V2A) oder 1.4571 (V4A), mit Mineralwollfüllung.
- --- elektrischer Stellantrieb (-E), 3-Punkt-Regelung (Standard, VMPR-...-E044; 24V, VMPR-...-E045; 230V) oder stetige Regelung (VMPR-...-E046; 24V, VMPR-...-E016; 230V), zur Anpassung des Zu- oder Abluftvolumens an sich ändernde Raumbelegungen.

VMPR / VMPQ

TECHNISCHE DOKUMENTATION

Ausschreibungstext VMPR | Ausschreibungstext VMPQ

AUSSCHREIBUNGSTEXT VMPQ

Eckige Ausführung

Mechanischer Volumenstromregler Typ VMPQ, in eckiger Bauform, Ausführung rechts, für konstante Volumenstromregelung bis max. 1000 Pa Differenzdruck, für Kanalanschluss nach DIN EN 1505. Gehäuse und Regelklappe aus Stahlblech verzinkt (-SV), Regelgehäuse aus Kunststoff.

Fabrikat: SCHAKO Typ VMPQ

Größe x (Breite x Höhe)

Gehäuse und Regelklappe (gegen Mehrpreis) aus:

- --- Stahlblech verzinkt mit DD-Lackierung (-DD)
- --- Edelstahl 1.4301 (-V2)
- --- Edelstahl 1.4571 (-V4)

Regelgehäuse (gegen Mehrpreis) aus:

- --- Edelstahl 1.4301 (-V2)
- --- Edelstahl 1.4571 (-V4)

Zubehör (gegen Mehrpreis):

- --- Dämmschale (-DS2), aus schalldämmendem Material 20 mm, nicht brennbar nach DIN 4102-17, mit Blechummantelung und inklusive Käfigmuttern M6.
- --- Mineralwolle-Schalldämpfer (-ZSQ) beidseitig mit METU-Profil M2, Gehäuse (L=1500) aus verzinktem Stahlblech, gegen Mehrpreis aus Edelstahl 1.4301 (V2A) oder 1.4571 (V4A), mit integrierten MWK-Schalldämmkulissen (L=1000). Die MWK-Schalldämmkulissen, mit RAL-Gütezeichen, bestehen aus mit Glasseide abgedeckten, abriebfesten Mineralfaserplatten (biolöslich, gemäß DIN 4102 nicht brennbar) in einem Rahmen hergestellt aus dem Material aus dem das Mineralwolle-Schalldämpfer-Gehäuse bestehen. Kulissen gemessen nach ISO/DIS 7235 und nach DIN 45646.
- --- elektrischer Stellantrieb (-E), 3-Punkt-Regelung (Standard, VMPQ-...-E044; 24V, VMPQ-...-E045; 230V) oder stetige Regelung (VMPQ-...-E046; 24V, VMPQ-...-E016; 230V), zur Anpassung des Zu- oder Abluftvolumens an sich ändernde Raumbelegungen.