
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under

grant agreement No 731845

EUROPEAN SECURITY CERTIFICATION

FRAMEWORK

 D3.3 ARCHITECTURE AND TOOLS

FOR EVIDENCE STORAGE

V 1.0

PROJECT NUMBER: 731845

PROJECT TITLE: EU-SEC

DUE DATE:31/12/2017 DELIVERY DATE: 27/12/2017

AUTHOR:

PARTNERS CONTRIBUTED:

CaixaBank, Fraunhofer AISEC, SI-MPA,

SixSq

DISSEMINATION LEVEL:*

PU

NATURE OF THE DELIVERABLE:**

R

INTERNAL REVIEWERS:

CSA, MF SR

*PU = Public, CO = Confidential **R = Report, P = Prototype, D = Demonstrator, O = Other

EU project 731845 – European Certification Framework EU-SEC

Deliverable D3.3 Architecture and Tools for Evidence Storage V1, Dec 2017 Page 2 of 36

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 3 of 36

EXECUTIVE SUMMARY

The EU-SEC project proposes continuous certification as an enhancement of the current

manual certification procedures by incorporating automated and continuous workflows for

collecting and evaluating evidences. The existing tools providing support for the continuous

security audits of cloud services operate based on monitoring- and test-based techniques that

produce evidences.

This deliverable proposes the design and implementation of an architecture which ensures

trustworthy, reliable and performant management of evidences. This includes storage of

evidences as well as all the interfaces, data formats and protocols required to provide a

seamless and generic transport of data from the evidence producer to the storage element,

and from the storage element to data consumers and CSP end-users.

Building on the content from past deliverables, evidences are seen as cloud infrastructure

resources and are adopted by an infrastructure management model and protocol described by

the CIMI specification. In agreement with this specification, the desired data structure for the

produced evidence is fine-tuned and the mechanisms for user authentication and authorization

are here introduced.

In order to provide a scalable and analytical approach for the storage of evidence, ElasticSearch

will be used, introducing a document based evidence management instead of the traditional

relational databases.

EU project 731845 – European Certification Framework EU-SEC

Deliverable D3.3 Architecture and Tools for Evidence Storage V1, Dec 2017 Page 4 of 36

DISCLAIMER

The information and views set out in this publication are those of the author(s) and do not

necessarily reflect the official opinion of the European Communities. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible

for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the EU-SEC Consortium

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 5 of 36

ABBREVIATIONS

EU-SEC European Security Certification Framework

DBMS Database Management System

JSON JavaScript Object Notation

DSL Domain Specific Language

CSP Cloud Service Provider

CIA Confidentiality, Integrity, Availability

CIMI Cloud Infrastructure Management Interface

EU project 731845 – European Certification Framework EU-SEC

Deliverable D3.3 Architecture and Tools for Evidence Storage V1, Dec 2017 Page 6 of 36

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 3

DISCLAIMER ... 4

ABBREVIATIONS ... 5

TABLE OF CONTENTS .. 6

LIST OF TABLES ... 7

LIST OF FIGURES ... 7

1 INTRODUCTION .. 8

1.1 OBJECTIVES ... 9

1.2 DOCUMENT STRUCTURE ... 9

2 CONTINUOUS AUDITING AND CERTIFICATION ARCHITECTURE .. 10

2.1 EVIDENCE PRODUCTION AS PART OF CONTINUOUS SECURITY AUDITS ... 10

2.2 ACCURATE EVIDENCE PRODUCTION ... 12

2.3 TRUSTWORTHY EVIDENCE PRODUCTION AND STORAGE ... 14

2.4 AFFECTING EVIDENCE MANAGEMENT .. 14

2.4.1 Potential threats .. 14

2.4.2 Illustrative attack scenarios on evidence production and storage 18

2.4.3 security requirements for trustworthy evidence production and storage 20

2.5 EVIDENCE FORMAT ... 22

3 EVIDENCE MANAGEMENT .. 24

3.1 INTERFACES ... 25

3.2 DATA COLLECTION AND STORAGE ... 27

3.3 EVIDENCE DISPLAY/PUBLICATION .. 29

4 REFERENCES.. 30

APPENDIX A ... 31

APPENDIX B ... 35

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 7 of 36

LIST OF TABLES

TABLE 1. THREATS IMPACT AND MEASUREMENT .. 14

LIST OF FIGURES

FIGURE 1 CONTINUOUS SECURITY AUDITS (INCLUDING POTENTIAL TARGET POINTS OF

ATTACK) ... 11

FIGURE 2 - CONTINUOUS AUDITING PROCESS ... 24

FIGURE 3 - SNIPPET OF THE FULL ARCHITECTURE, INCLUDING THE EVIDENCE MANAGEMENT

INTERFACE .. 25

FIGURE 4 - EVIDENCE STORAGE HIGH LEVEL ARCHITECTURE ... 28

 EU project 731845 - European Certification Framework EU-SEC

Page 8 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

1 INTRODUCTION

Many of the existing certification procedures nowadays are manual (requiring human

intervention). When applied to Cloud Service Providers, these procedures are still sub-optimal

when it comes to efficiency and effectiveness of the used security certification techniques.

While other work packages within the EU-SEC project are focusing on the collections of

requirements and definition of controls for improving the existing security certification

methods, this work package’s goal is to design methods and implement components for a

production deployment of cloud services security audits, in a continuous manner, so that the

existing manual certification procedures can be incorporated with ongoing research

approaches to automatically generate and evaluate evidences. Apart from all of the above,

evidences have to be produced in a particular way and following strict security requirements,

because they have to preserve their independence of the entire system in the sense that they

are the material from which audit and certification is based, and therefore the credibility of the

entire system is based on the credibility of the evidences.

In deliverable (D3.2), tools and a Domain Specific Language have been defined that alongside

monitoring-based and test-based techniques, can be used for automating the generation of

security certification evidence for CSPs, furthermore allowing the processing of evidence based

on measurements which return the necessary output for performing the control objective

evaluation and therefore issue claims based on the existing SLOs or SQOs. This workflow

provides the necessary foundation for an automatic and continuous auditing process.

Evidences can be used for several reasons, and it will be necessary to cover different use cases,

such as:

1- Evidences could be used by third parties such as auditors or regulator bodies to verify

that the Cloud service is achieving the audit and certification criteria

2- Evidences could be used by the CSP as contrast to their own indicators and verify that

there is not any incongruence. CSP can also use evidences prove and report that the

Service is actually achieving the level of privacy and security. Due to the fact that

evidences are produced in a secure and independent way CSP can reinforce their

reports from an independent point of view.

3- Evidences can be used by the CSC to monitor the Service, with two main advantages,

on one hand evidences are produced directly from the service and in principle can’t be

manipulated by the CSP, and on the other hand, evidences can be integrated in the

infrastructure of the CSC and therefore the CSC can aggregate and correlate evidences

with internal information in an integrated way.

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 9 of 36

To be able to assure that evidences can be trusted, in general they have to follow the three

basic requirements of security, known as CIA (Confidentiality, Integrity and Availability) apart

from the non-repudiation. These security requirements are further developed in chapter 2.4.3

security requirements for trustworthy evidence production and storage

1.1 OBJECTIVES

The purpose of this deliverable is to build on top of the continuous auditing architecture

defined in D3.2, adding the ability to both store and manage evidence through a standard

interface. The proposed management solution shall provide secure data transfer from the

evidence producer to the storage element and from the latter to an end-user, an appropriate

evidence storage technology that eases the search, filtering and analytical processing of the

stored evidence, and different means of retrieving and even visualizing data, both through an

API and a web interface.

The proposed evidence management architecture shall take into account privacy aspects,

making sure evidence cannot be compromised both through direct access to the storage

element or anonymous and unauthorized access to data.

This document also introduces the concept of evidence cataloguing, whereby a 3rd party tool

can make use of the stored evidence to generate a catalogue of cloud service offers from which

end-users can search and perform tailored queries according to certain security requirements,

thus optimizing the selection of a cloud provider prior to the actual deployment of services

and applications in the infrastructure. This 3rd party tool shall not only offer the evidence

catalogue for different CSPs, seamlessly, but also provide the ability to ease the setup of the

continuous auditing process throughout different cloud providers, thus minimizing boilerplate

code during deployment.

Evidences should be comply with all the legal requirements to be used as a proof in case of

trial, so they have to guarantee the chain of custody.

The outcome of this deliverable shall serve as a foundation for the pilot phase addressed in

work package 5, where the different project tools and defined architectures will be

implemented and integrated.

1.2 DOCUMENT STRUCTURE

This deliverable first starts by addressing the continuous auditing and certification architecture

already defined in deliverable D3.2, providing a summary on how evidence is produced and

which kind of external factors and assessments can influence not only the generation and

trustworthiness of the evidence, but also its management. The existing data format and

 EU project 731845 - European Certification Framework EU-SEC

Page 10 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

structures in which evidence are produced (testResult) are exemplified. Afterwards, in section

3, the actual backend for storing and handling evidence is described, detailing the interface to

be used to manage evidence in a secure way, as well as a document based search engine for

storing (and possibly visualize) evidence and the respective attribute mapping that should be

followed to maintain consistency amongst testResults.

2 CONTINUOUS AUDITING AND CERTIFICATION

ARCHITECTURE

In this section, the production, trustworthiness and representation of automatically produced

evidence is described. To that end, section 2.1 describes the role of test-based evidence

production in context with the other concepts which are needed to allow for continuous

security audits of cloud services. Thereafter, section 2.2 und 2.3 outline challenges with regard

to the quality and security properties of evidence. These challenges may affect the

trustworthiness of the evidence with regard to, e.g. certification authorities, service customers

or service providers. Lastly, section 2.5 introduces a data structure how to represent an instance

of evidence within the evidence store.

2.1 EVIDENCE PRODUCTION AS PART OF CONTINUOUS

SECURITY AUDITS

In order to understand the concept of the evidence storage in the context of continuous

security audits, recall how evidence is produced and processed as introduced in Section 3 of

Deliverable 2.2 as well as in Section 1.1.1 of Deliverable 3.2. Figure 1 provides an overview how

the different concepts when implemented by a concrete tool chain support continuous security

audits: Evidence production techniques provide, e.g. by using tests, some form of evidence,

e.g. supported TLS cipher suites of a cloud service’s public endpoint (Step 1).

There are two approaches to continuous evidence production (Cimato, 2013):

 Monitoring-based evidence production: These techniques use monitoring data as

evidence which is produced during productive operation of a cloud-service (Stephanow

P. a., 2015). Two major types of monitoring-based evidence production techniques can

be distinguished: The first group consists of methods proposed by current research

(e.g., Krotsiani et al. (Krotsiani, 2013), Schiffmann et al. (Schiffman, 2013)) which are

specifically crafted to produce evidence to check whether particular properties of a

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 11 of 36

cloud service are satisfied, e.g. integrity of cloud service components (Schiffman, 2013)

and correctness of non-repudiation protocols used by cloud services (Krotsiani, 2013).

Those methods require implementing additional monitoring services which are not

needed for operational monitoring of the cloud service. The second group of

monitoring-based evidence production techniques consists of existing monitoring

services and tools which are used to operate the infrastructure of a cloud service, e.g.,

Nagios or Ganglia. The data produced by these monitoring tools can also be used as

evidence to check a cloud service's properties such as availability (Stephanow P. a.,

2015). Additionally, data produced by tools which aims to detect intrusions such as

Snort, Bro, or OSSEC can serve as evidence (Stephanow P. a., 2015) (Stephanow P. a.,

2015).

 Test-based evidence production: Similar to monitoring-based techniques, test-based

evidence production also collects evidence while a cloud-service is productively

operating. Different to monitoring-based techniques, however, test-based techniques

do not passively monitor operations of a cloud service but actively interact with it

through tests. Thus test-based methods produce evidence by controlling some input

to the cloud service, usually during productive operation, e.g. calling a cloud service’s

RESTful API (Cimato, 2013) (Stephanow P. a., 2017).

Figure 1 Continuous security audits (including potential target points of attack)

In the course of the EUSEC project, the focus lies on test-based evidence production;

monitoring-based is not considered. As Figure 1 indicates, each produced instance of evidence

is forwarded to the evidence store (Step 2). More specifically, a test result is sent to the evidence

 EU project 731845 - European Certification Framework EU-SEC

Page 12 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

store. Recall that – as described in Section 4.1.5 of Deliverable 3.2 – a test result contains an

instance of evidence. Only parts of a singular test result are considered evidence, whereas the

entire test result already implies that a decision has been made based on the information

observed during the test’s execution. Thus, any information which serves as input to a well-

defined test oracle which is part of test cases constitutes evidence.

Instances of evidence are then further processed by a metric, i.e. a function which takes

evidence as input and outputs measurement results (Step 2a). This refines and operationalizes

the general definition of the term metric provided by Deliverable 1.4 where a metric is a

“specified process for obtaining a value”.

A measurement technique consists of at least one evidence production technique and one

metric. In context of the TLS cipher suite example, a concrete metric may inspect the list of

supported cipher suites and check whether it only contains those of a predefined whitelist

which are considered secure. A measurement result produced by that metric either indicates

that all supported cipher suites are secure (isSecure) or are not secure (isNotSecure).

After having been produced, measurement results are forwarded to control objective evaluation

(Step 3). Satisfaction of a control objective, again, can be described as a function which takes

a measurement result as input and outputs a claim, that is, a result indicating whether a control

objective holds at some point in time.

Once a claim has been produced, it is then forwarded to the claim store (Step 4). In case a

dispute arises, e.g. between a service customer and the service provider, then claim store can

inquire the evidence which has been used to produce the claim.

 Based on controls: In this case, evidences are defined directly from the control. It should

be possible to define which kind of evidences are needed to verify Control is correctly

applied and taking into account that they can be used to provide proof that the Control

is correctly applied, therefore starting from a particular Control, registries, logs and

documents should be produced in order to demonstrate the level of applicability of the

Control.

2.2 ACCURATE EVIDENCE PRODUCTION

Evidence produced by some evidence production technique forms the atom upon which the

reasoning about particular cloud service properties is based. Satisfaction of these properties,

in turn, determines whether a control objective holds.

Inaccurate evidence undermines both the cloud service providers' and the customers' trust: On

the one hand, evidence that incorrectly leads to the conclusion that a control objective is

satisfied erodes the customer's trust. On the other hand, cloud service providers will dispute

evidence that incorrectly suggest control objectives are not fulfilled. Therefore, it is essential to

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 13 of 36

evaluate the accuracy and precision of evidence production techniques, that is, how close is

produced evidence to the truth?

Consider the control TVM-02 Threat and Vulnerability Management of CSA’s Cloud Control

Matrix (CCM) which reads

“Policies and procedures shall be established, and supporting business processes and

technical measures implemented, for timely detection of vulnerabilities within

organizationally-owned or managed (physical and virtual) applications and

infrastructure network and system components, applying a risk-based model for

prioritizing remediation through change-controlled, vender-supplied patches,

configuration changes, or secure software development for the organization's own

software [..].”

One possibility to continuously produce evidence supporting validation of this control is to

execute a vulnerability scanner every ten minutes and then use the output of this scanner as

evidence to check whether vulnerabilities are found, and if found, whether they it has been

detected in time. The question is now whether the evidence production technique makes

mistakes by, e.g., by incorrectly indicating that the cloud service under test has no

vulnerabilities while it actually has. In this case, it is unclear to what extend the produced

evidence can be used to determine the test result as well as compute more complex

measurement results which are then used to check if control objective is satisfied. Does, e.g.,

the vulnerability scanner always miss to detect a particular vulnerability or merely occasionally?

In the next example, we assume that the evidence production technique used to test for

security vulnerabilities only produces correct evidence. When inspecting control TVM-02, it

becomes apparent that it not only requires detecting security vulnerabilities but also demands

remedy within specific period of time. In context of such temporal constraints, further errors

may occur when – based on metrics using the evidence – estimating the duration of detected

vulnerabilities.

Addressing the above challenges, Deliverable 3.4 will introduce a method how to

experimentally evaluate the accuracy and precision of continuous test-based measurement

techniques. This method allows comparing alternative test-based measurement techniques as

well as comparing alternative configurations of test-based techniques. Furthermore, it permits

to infer general conclusions about the accuracy of a specific test-based measurement

technique.

It should be possible to relate Controls with evidences, that is to say, starting from a Control,

to know the set of evidences which are related to this Control, and the other way round, from

each evidence to know to which Control is related with.

Taking into account what has been said previously regarding the validity of the evidences in a

legal process, security of the evidences should be possible to demonstrate, as well as the chain

of custody and their metadata, such as timestamp.

 EU project 731845 - European Certification Framework EU-SEC

Page 14 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

2.3 TRUSTWORTHY EVIDENCE PRODUCTION AND

STORAGE

This section describes high-level requirements for trustworthy evidence production and

storage. To that end, examples of attack scenarios on evidence production and storage are

outlined. Those scenarios are derived from the high-level description of the concepts involved

in continuous security audits shown in Figure 1. Then, given these attack scenarios, security

requirements for trustworthy evidence production and storage are derived.

It is important to note at this point that the requirements introduced in this section are neither

complete nor sufficiently concrete to derive a (risk-based) security model for evidence stores.

Deriving such a security model involves, among others, defining a realistic attacker, having

detailed architecture of the involved systems available, conducting security tests (e.g.,

penetration tests) to determine the probability of a successful attack and estimating of

damages resulting from, e.g., modified instances of evidence. It is obvious that these conditions

depend on (and thus vary with) the concrete scenario in which a particular cloud service should

be continuously audited. Additionally, there is a multitude of variants feasible when

implementing a concrete tool chain to support continuous security audits. Therefore, a risk-

based security model has to be derived in context of a concrete deployment of the tool chain

with a particular cloud service. The process of risk-based deployment of the tool chain will be

described in detail as part of Deliverable 3.4.

2.4 AFFECTING EVIDENCE MANAGEMENT

2.4.1 POTENTIAL THREATS

The audit evidences must be provided and available in the automatic way at the point when

the continuous auditing happens. We identified several influences (threats) that might impact

the collection, management and use of the evidences. This can be structured in next areas:

 Changes of the requirements for the cloud services

 Interruption of cloud services

 Security, safety and accuracy of tools supporting continuous auditing

 Documentation of evidences storage and used tools

 Use of evidences.

Table 1. Threats impact and measurement

Changes of the requirements for the cloud services

Threats Impact Measure

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 15 of 36

Frequent changes in the

legislation or in the

requirements of the CSC

Tool doesn’t provide the

functionalities capable

to provide evidences

compliant with the new

requirements

- Changes of SLA

Diverse required retention

period and frequency of

providing and recording

evidences by legislation or

individual CSC

Impact on the storage

capacities and

technologies

- Separate storage

- Multi-tenant cloud service

environment

- Scalable storage capacities

- Location of the data (inside

specific geographical

coverage)

Interruption of cloud service

Threats Impact Measure

External threats will

originate from sources

outside of the

organization and its

network of partners which

can interrupt the cloud

service. Examples include

criminal groups, lone

hackers, former employees

etc. Typical examples

include:

 Phishing: phishing

as a means to

install persistent

malware with

stolen credentials

 Human element:

social engineering,

financial

pretexting, digital

extortion, insider

threat, partner

misuse

 Conduit devices:

peripheral

tampering, USB

infection, hacktivist

attack, rogue

connection, logic

switch

Typical threats could

have impact on

integrity, availability and

confidentiality of cloud

services.

The tool shall provide all aspects

of information security (integrity,

availability and confidentiality) and

shall be complied also with Data

Protection Act.

To eliminate the impacts of

external threats the tool shall be

used (manual or automatic)

together with other tools or

measures which detect cyber

attacks (SOC).

 EU project 731845 - European Certification Framework EU-SEC

Page 16 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 Configuration

exploitation:

backdoor access,

SQL injection, CMS

compromise, DNS

tunneling

 Malicious software:

data ransomware,

sophisticated

malware, credential

theft

 Data breaches:

involved weak,

default or stolen

passwords

Web applications: The

great complexity of the

infrastructure makes web

application servers a

target for attackers. Web

sites are not static pages

anymore, they are highly

interactive and more

complex.

Security, safety and accuracy of tools supporting continuous auditing

Threats Impact Measure

Disruption of evidence

production and storage

Evidence production or

evidence storage may

not be operational for

some time which leads

to gaps in the

continuously produced

evidence.

The tool for collecting and storage

of evidences, together with

communication lines, shall provide

a high level of availability with the

option of real time monitoring. All

intentional interruptions shall be

planned and documented

(upgrades of tools, vulnerability

checks, business continuity plans).

Inaccurate evidence

production

The tooling which

implements continuous

security audits may be

incorrectly configured or

erroneous resulting in

the production of

incorrect instances of

evidence.

- Trainings, presentations,

available documentation

for the use of the tool

- Change control process

- Analytics tools for

assessment of evidences

Vulnerability of tools Vulnerabilities of tools

may lead to disrupted or

- regularly test and check

the tool

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 17 of 36

modified evidence

production which render

produced instances of

evidence unusable for

continuous security

audits

- Eliminate bugs by updating

the tools with new versions

- Controlled development of

the tool

Documentation of evidences and tools

Threats Impact Measure

- Lack of

documentation

- Outdated

documentation

- Incorrect

interpretations of

collected

evidences

- Evidences are

useless

- Unknown

significance of

data

- Up-to-date documentation

of tools (specifications,

configuration, versioning)

and evidences

- Requirement: 16.1.7 /

ISO27017 and A.16.1.7 /

ISO27001 (procedures for

the identification,

collection, acquisition and

preservation of

information, which can

serve as evidence -

Examples from D1.2

combined requirements)

Use of evidences

Threats Impact Measure

Different interpretation of

evidences

Different interpretations

leading to different

auditing

assessments/conclusion

s

- Trainings, presentations,

available documentation

Auditors’ skepticism to

trust the evidences

provided by tools (low

level of trustfulness,

validity and usefulness)

- Available

evidences are

not used in audit

process

- Lower level of

audit automation

- Trainings, presentations,

available documentation

- Official recognition of

continuous auditing tools

and evidences in auditing

process by certification

bodies

 EU project 731845 - European Certification Framework EU-SEC

Page 18 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

2.4.2 ILLUSTRATIVE ATTACK SCENARIOS ON EVIDENCE PRODUCTION

AND STORAGE

This section presents a set of exemplary, high-level attack scenarios which are derived from the

continuous security audit concepts shown in FIGURE 1 which were introduced in Section 2.1.

ATTACKING THE INTEGRITY OF EVIDENCE PRODUCTION AND STORAGE

The integrity of evidence can be subjected to an attack, that is, someone intentionally tries to

modify the data which an instance of evidence contains. Such unauthorized alteration of

evidence may be attempted at different points during evidence production and storage.

Hereafter, some exemplary high-level scenarios are described which outline how an attacker

may compromise the integrity of evidence and discuss consequences.

To begin with, an attacker can try to modify the application which is used to produce the

evidence (see entry point A of Figure 1), i.e. the implementation of the evidence production

technique (which, as point out in Section 2.1, conceptually is part of the measurement

technique). For example, an evidence production technique which parses the configuration file

of a web server to discover supported TLS cipher suites may be altered by an attacker to not

include those cipher suites in the produced evidence which are known to contain

vulnerabilities. A measurement conducted on the basis of this evidence will thus not indicate

the endpoint actually supports vulnerable TLS configurations. Furthermore, the evidence

persisted in the evidence store will not reflect the actual status of the cloud service under audit.

If successful, this type of attack is particularly perfidious since even if a customer later discovers

by herself that claims produced by the continuous audits do not accurately reflect reality, then

inquiring the instances of evidence which led to the computation of the claim will be consistent

with the claim, thereby falsely rejecting the objection brought forward by the customer.

However, there is no means by which the customer can prove that her objection to the

produced claims is in fact valid.

As another example, consider an attack to modify instances of evidence when they are

transferred from the evidence production technique to the evidence store (see entry point B

of Figure 1). In this scenario, the implementation of the evidence production technique remains

unaltered and instances of evidence are altered only after having been produced accurately.

This implies that measurement results computed on the basis of this evidence are also accurate,

that is, they contain correct information about whether a cloud service has a certain property

or not. However, since the instances of evidence are manipulated during transit from the

evidence production technique (or measurement technique) to the evidence store, these

instances which are persisted by the evidence store are not trustworthy. When considering the

retrieval of evidence in case there is a dispute over a claim, such modified evidence may

incorrectly contradict claims: Although the claims are actually correct, because they have been

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 19 of 36

computed using unaltered measurement results, the altered and thus incorrect instances of

evidence persisted in the evidence store suggest otherwise.

Lastly, an attacker may try to gain unauthorized access to the evidence store in order to

manipulate stored evidence (see target point C of Figure 1). In this case, the evidence

production techniques as well as transfer between the evidence production and evidence store

have not been compromised. Similar to the scenario of manipulating evidence during transit,

also in this scenario measurement results are computed based on accurate instances of

evidence. Yet, instances of evidence, which have been altered through unauthorized access to

the evidence store are not trustworthy. Therefore, when retrieving evidence used to compute

a claim, then it is unclear whether evidence contradictory to the claim is trustworthy.

ATTACKING THE AVAILABILITY OF EVIDENCE PRODUCTION AND STORAGE

The availability of evidence can be the target of an attack, i.e. an attacker tries to disrupt

evidence production or evidence storage. The next two paragraphs describe how an attacker

may disrupt production and storage of evidence as well as points out the potential

consequences of such types of attacks.

An attacker may disrupt the production of evidence at the very moment at which an evidence

production technique attempts to produce instances of evidence (see target point D of Figure

1). Recall the example of an evidence production technique which aims to identify all TLS cipher

suites supported by a cloud service's endpoint. Let's consider that the supported TLS cipher

suites are produced by the technique through actively connecting to the endpoint and

conducting TLS handshakes. If an attacker is able to disrupt these communication attempts,

then the evidence production technique cannot obtain the desired evidence. As a result, due

to the lack of evidence, no measurement results can be computed and thus the evaluation as

to whether a cloud service only uses strong cipher suites at a certain point in time is not

feasible. Naturally, since no instance of evidence is produced, none are forwarded and persisted

in the evidence store. It is obvious that a successful attack of this type disrupts the entire

continuous security audit process. Therefore, as long as this attack persists, no claims are

produced because they draw on measurement results whose computation is not feasible due

to the unavailable instances of evidence.

In a different scenario, an attacker may not be able to directly disrupt evidence production

technique but to disrupt the insertion of instances of evidence into the evidence store (see

target point B of Figure 1). In this case, the evidence production techniques work as expected.

Only after an instance of evidence has been correctly produced, its subsequent persistence in

the evidence store is disrupted. There are multiple attack vectors which may prevent the

insertion of an instance of evidence into the evidence store. For example, the attacker may

access the evidence during transit and alter it in such a way that it is discarded as invalid input

when provided to the evidence store. Note that since the evidence production technique works

correctly, measurement results can be computed, thus allowing to produce claims at a certain

point in time. Yet, as pointed out above, the corresponding instances of evidence used to derive

the claim are not persisted in the evidence store. This implies that it is not feasible to retrieve

 EU project 731845 - European Certification Framework EU-SEC

Page 20 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

the evidence which was used to compute a particular claim. Therefore, in case of a dispute, a

produced claim cannot be substantiated with evidence.

Lastly, an attacker can focus on disrupting the execution of the evidence store itself (see target

point E of Figure 1). Similar to the case above, evidence production as well as computing

measurements results and claims will function as expected. However, instances of evidence

cannot be persisted at the evidence store because the attacker managed to force it into a state

of service denial. A possible attack vector may leverage vulnerabilities in the authentication

procedure of the evidence store, or the exhaustion of the evidence store's resources (e.g., the

VM it is running on), rendering it unable to process other requests (such as storing instances

of evidence provided by the evidence production technique). In case of a successful attack, no

instances of evidence can be persisted at the evidence store and thus produced claims cannot

be verified through retrieving the corresponding evidence.

2.4.3 SECURITY REQUIREMENTS FOR TRUSTWORTHY EVIDENCE

PRODUCTION AND STORAGE

Hereafter, a set of general security requirements are described which are derived on the basis

of the exemplary attack scenarios outlined in the previous paragraphs. These requirements are

sorted by the groups’ governance, integrity, availability, authenticity, authorization, non-

repudiation, and consistency:

 Governance

o Gov01: Applications which implement measurement techniques (part of which

are evidence production techniques) as well as evidence stores have to follow

a suitable security model.

o Gov02: The security properties of the measurement technique and the

evidence store have to be tested and verified (through different suitable means

of review and testing) initially (i.e., at time of first deployment) as well as

incrementally on any change made to the applications, their configuration or

their deployment environments.

o Gov03: Applications implementing measurement techniques (including

evidence production techniques) and evidence stores, their configurations as

well as their deployment environments have to conform to their last accredited

version.

 Confidentiality

o Conf01: Instances of evidence persisted at evidence stores shall only be

disclosed to authorized entities.

o Conf02: Instances of evidence forwarded by measurement techniques to

evidence stores shall not be disclosed to any entity during transit.

o Conf03: Instances of evidence produced by measurement techniques shall only

be disclosed to authorized entities after production, before forwarding

instances to an evidence store.

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 21 of 36

o Conf04: Instances of evidence shall not be persisted by the measurement

techniques and shall be irrecoverably deleted immediately after having been

forwarded to the evidence store.

 Integrity

o Int01: Applications which implement measurement techniques and evidence

stores, their configurations and their deployment environments may only be

modified before initial deployment or during operation by authorized entities.

o Int02: Instances of evidence provided by evidence production techniques shall

only be modified by authorized entities after production.

 Availability

o Avail01: Communication between measurement techniques and evidence

store has to be feasible at all times (with some level of confidence).

o Avail02: Deployed evidence production techniques have to be able to produce

instances of evidence at all times (with some level of confidence).

o Avail03: Forwarding produced instances of evidence from measurement

techniques to the evidence stores has to be always feasible (with some level of

confidence).

 Authenticity

o Authn01: Measurement techniques and evidence stores have to mutually

authenticate each other before instances of evidence are forwarded from a

measurement technique to an evidence store.

o Authn02: Parties which request access to the evidence store must authenticate

themselves with the evidence store.

 Authorization

o Authz01: Only measurement techniques with proper authorization can store

instances of evidence at an evidence store.

o Authz02: Only authorized entities can access evidence stores, modify their

configurations and their deployment environments.

o Authz03: Authorized entities can only read those instances of evidence

persisted in the evidence store for which they have proper permissions.

o Authz04: Authorized Entities can only modify those instances of evidence

persisted in the evidence store for which they have proper permissions.

o Authz05: Only authorized entities can access measurement techniques, modify

their configurations and their deployment environments.

 Non-repudiation

o NonRep01: Modifications of measurement techniques, their configurations or

their deployment environments have to be documented without exception and

in a non-repudiable manner.

o NonRep02: Modifications of instances of evidence after production through

accessing the measurement technique have to documented without exception

and in a non-repudiable manner.

o NonRep03: Access to the evidence store has to be documented without

exception where the entity responsible for the transaction can be rigorously

identified (i.e., it is possible to formally prove that an entity has accessed the

evidence store).

 EU project 731845 - European Certification Framework EU-SEC

Page 22 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 Consistency

o Consist01: Measurement results shall only be computed based on instances of

evidence that has been persisted at the evidence store (with some level of

confidence).

2.5 EVIDENCE FORMAT

As mentioned above in Figure 1 Continuous security audits (including potential target points

of attack), evidences will be embedded in the test results coming out of the test-based

evidence production engine. These results are here addressed as raw data and in practice they

are represented in a JSON format, which allows for a direct injection into the evidence storage

element addressed in Section 3.2.

Two real test result samples are exemplified in Appendix A. Even though the evidence structure

might evolve alongside with the architecture for continuous auditing and evidence

management, the key values to retain from these records are:

TestSuiteResult

 TestSuiteResult._id: ID given by the evidence production engine DB

 TestSuiteResult.className: given by same DB as above

 TestSuiteResult.testId: unique identifier for the test instance which produced the test

results

 TestSuiteResult.startTime: point in time when the test suite execution was triggered (a

single test execution within a continuous test always corresponds to executing a test

suite)

 TestSuiteResult.endTime: point in time when the test suite execution completed, i.e. all

test cases bound to a test suite completed (a test suite always binds at least one test

case)

 TestSuiteResult.passed: the result of the test suite execution (a test suite only passes if

all contained test cases pass)

TestSuiteResult.source

 source.interval: 2-tuple from which waiting time after completion of last test suite

execution is chosen

 source.randomized: waiting time after completion is chosen either randomly (true) or

only the first bound of the interval is used for static waiting time after completion if set

to false

 source.label: descriptive name for a test suite

 source.offset: additional fixed offset added to waiting time after completion

 source.iteration: maximum number of successive executions of the test suite (if set to

-1, then iterations are unlimited)

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 23 of 36

TestSuiteResult.testCaseResults

 testCaseResults: array of results return by each test case which is executed as part of the

test

 testCaseResults.[i]._id: test case ID given by the DB

 testCaseResults.[i].details: detailed results which a test case returns and which can be

used to compute a metric (measurement result), e.g. 'accessiblePorts' in the case of

PortTest, or 'hasHeartBleed' in the case of TLSTest (see Appendix A)

 testCaseResults.[i].source: contains the specification of the test case that produced the

testCaseResult.[i]

 testCaseResults.[i].source.className: given by the DB

 testCaseResults.[i].source.[testOracle]: list that specifies the expected values which are

used to determine whether a test passes or fails, e.g. in the PortTest, this key is named

'expectedPorts' while in TLSTest, it is called 'expectedBlacklist' (see Appendix A)

 testCaseResults.[i].source.name: descriptive name of the test case

 testCaseResults.[i].source.order: priority (1 is highest) of test case execution, i.e. the

order in which a test suite executes test cases

 testCaseResults.[i].source.timeout: maximum time a test case waits until a result is

returned

 testCaseResults.[i].source.toolName: name of an external tool if applicable, e.g. for

TLSTest, it is sslyze, for PortTest, it is nmap (see Appendix A)

 testCaseResults.[i].source.startTime: point in time when the test case execution was

triggered

 testCaseResults.[i].source.endTime: point in time which the test case execution

completed

 testCaseResults.[i].source.passed: the result of the test case execution

Note: the fields hereafter are specific to test case implementations, that is, there are a couple

of fields in 'testCaseResults.[i].source' which depend on the test case:

 testCaseResults.[i].source.host: target IP or hostname of the service endpoint which the

test points to (not always applicable, some cases may require a URL to address a specific

resource, e.g. if a particular API is called by the test)

 testCaseResults.[i].source.?: Miscellaneous test case specific fields, e.g. 'runAsRoot' if

external tooling requires root privileges; in the TLSTest, the field 'sslPort' specifies which

port is expected to support TLS (see Appendix A), etc.

 EU project 731845 - European Certification Framework EU-SEC

Page 24 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

3 EVIDENCE MANAGEMENT

With basis on deliverable D3.2 and the architecture presented in Figure 1, the continuous

auditing process is hereby simplified in Figure 2.

Figure 2 - Continuous auditing process

The evidences are enclosed by the testResults produced by Clouditor. Each numbered circle in

the diagram represents the execution step and order in which evidences are managed. These

have already been described in section 2.1. The only noticeable differences here are the

introduction of SlipStream1 in between step 5 and 6, acting as a cataloguing service for the

continuous auditing claims and evidences, which ultimately will be presented to end-users to

allow an optimized selection of a cloud provider.

1 http://sixsq.com/products/slipstream/

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 25 of 36

3.1 INTERFACES

To achieve a modular architecture whereby evidences can be managed independently of the

evidence generator and storage technology (producer and consumer), an interface is hereby

proposed, which can be deployed in a standalone mode (a micro-service), can easily be

adapted to different surrounding technologies and which sits alongside the storage element

as shown in the Figure 3 snippet below.

Figure 3 - Snippet of the full architecture, including the evidence management interface

Since evidences can be seen as parameters of the Cloud Service Provider, they can be

represented as infrastructure resources thus fitting well with the Cloud Infrastructure

Management Interface (CIMI) model and RESTful HTTP-based protocol for management

interactions, as described by DMTF2.

CIMI provides a standard for the management of resources within an infrastructure. For the

EU-SEC framework, even though the evidences will be gathered by 3rd party tools, their content

will still be CSP dependant and can therefore be interpreted as a derived infrastructure

resource. All evidences shall be modelled and represented in JSON (and also XML if possible)

according to the CIMI specification. These will be identified by URIs, whereby each evidence

representation shall have a globally unique ID attribute of type URI which acts as a reference

to itself.

Beside its ease of use and wide industry support, this high-level interface provides:

● consistent resource management patterns, making it easy to develop small, lightweight

and infrastructure agnostic clients;

● auto discovery of new resources without changing clients, enabling dynamic evolution

of the platform;

● standard mechanism for referencing other resources;

2 http://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf

 EU project 731845 - European Certification Framework EU-SEC

Page 26 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

● flexibility to cover a wider range of resources than strictly those related to cloud

infrastructure management.

As an example of this standard’s flexibility, CIMI does not mandate any authentication nor

authorization process, but considering the scope of the EU-SEC framework, there is the

possibility to extend the model to include a “credentials” resource, in addition of the evidences,

to provide access control lists and fine-grained authorization.

This standalone interface shall run behind a reverse proxy (Nginx for example), providing a

proper SSL endpoint for the incoming requests and the ability to add authentication on top of

CIMI.

Finally, to ensure the auto discovery of resources, there shall exist a well-known entry point

resource allowing the discovery of the existing collections and operations (a collection is a

group of resources). So in practice, a completely public entry point “eu-sec-entry-point“ shall

be defined and published.

Data transport and privacy

As mentioned previously, the continuous auditing process relies on 3rd party tools performing

tests directly on the CSPs’ infrastructures, and consequently producing the evidences. On the

other end of this process are other 3rd party tools that may act as clients to the evidence storage

and retrieve (or even manipulate) the raw data.

The first concern to be addressed is how data will be secured during transport. As it will be

described in section 3.3, for security reasons, the evidence storage will have its access points

limited to the local machine hosting the database (localhost). This protection will be applied

though a security group and ensured by the machine’s firewall. Given this setup, both evidence

producers and consumers will not be able to directly manage data in the database, unless they

have been given direct access to the hosting machine.

The recommended way to transport data will therefore be through the CIMI interface described

above. Since the interface will be running behind a reverse proxy, on the same host machine

as the database, the proxy can be configured to add an extra authentication layer on top of

CIMI, which already handles control access to the evidence storage, based on the credentials

resource.

With CIMI, all operations shall be HTTP based, adding to the usual PUT, GET, DELETE, HEAD

and POST requests the possibility to have a JSON body, while covering all basic Search (or

Query) and CRUD (Create, Read, Update, and Delete) operations plus the possibility to add

custom operations which are mapped into POST requests.

According to the interface standard, the resources’ (in this case, evidences) representation shall

include an "operations" attribute which explicitly states the actions allowed to the client on that

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 27 of 36

resource. For EU-SEC this adds an extra layer of robustness as it will allow discrimination of

operation based on ACLs – for example, only administrators are able to EDIT existing evidences.

The use of the universally supported HTTP protocol makes CIMI the right interface for the EU-

SEC framework and continuous auditing in general, as it allows easy integration of additional

evidence producers and simplifies the evidence management know-how on the consumer(s)

side.

3.2 DATA COLLECTION AND STORAGE

The evidence collection and storage will be handled by the CIMI interface described above and

an ElasticSearch3 search engine as the storage element.

ElasticSearch is a document oriented database (written in Java), not following therefore the

usual DBMS concepts applied to a relational database. It provides a distributed RESTful search

and analytics engine which is not limited by the usual database constraints (schemas, tables,

etc.). Raw data is converted into documents with a basic data structure similar to JSON, which

makes evidences easier to manipulate. ElasticSearch’s Query-DSL (JSON based DSL) can be

used to perform fast full text searches, which is very convenient within an automated auditing

process as evidences might contain qualitative information. Finally, ElasticSearch architecture

is designed so it can be easily scaled horizontally while maintaining an abstraction layer that

hides all the distributed storage complexity from the actual end user.

Besides its wide adoption, there’s a large community behind ElasticSearch, which comes as an

advantage for long term support of the evidence storage.

One can also profit from auxiliary tools, two in particular, which have been created and

optimized to be fully integrated with ElasticSearch, providing data processing, transportation

and visualization.

Figure 4 below illustrates, on a simplified manner, how the evidence storage architecture will

look like. The main path is described by the black arrows while the grey dashed ones represent

two other optional workflows.

Besides the ElasticSearch storage element and the CIMI server interface, the evidence storage

shall be composed of the following components:

 Logstash4: a server-side data processing pipeline that is able to take as input data from

multiple sources, simultaneously, filter it and finally send it to one or multiple “storage”

elements. There are plenty of official and community provided plugins for Logstash,

allowing compatibility with a wide range of data inputs, filtering and data outputs;

3 https://www.elastic.co/products/elasticsearch
4 https://www.elastic.co/products/logstash

 EU project 731845 - European Certification Framework EU-SEC

Page 28 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 Kibana5: a data visualization plugin for ElasticSearch, providing plotting and exploring

of stored data. It natively supports a wide range of graphical representations;

 Træfik6: an HTTP reverse proxy and load balancer that eases the deployment of micro

services.

This deployment comprises therefore a full ELK7 stack (ElasticSearch-Logstash-Kibana), plus

a standardized resource management interface and a reverse proxy. The proposed

deployment is based on micro services, where each component is completely isolated from

all the others.

Figure 4 - Evidence storage high level architecture

The proposed workflows for the evidence management are:

1. using solely the CIMI interface to manage all evidences. This is the main workflow,

represented by the black solid arrows in Figure 4. All CRUD requests are sent to

https://evidence.storage/api, and are afterwards handled by the CIMI interface which

takes care of authenticating and authorizing the request, plus all the request body

interpretation and routing to an appropriate action defined within the interface;

2. using CIMI together with Logstash. While in option 1 the CIMI server is responsible for

pushing all evidence into ElasticSearch, here the CIMI server would be sending the

5 https://www.elastic.co/products/kibana
6 https://traefik.io/
7 https://www.elastic.co/products

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 29 of 36

messages through Logstash, which would decrease the interface load and burden of

doing consecutive PUT requests into ElasticSearch directly;

3. using solely Logstash. Logstash can also be exposed through Træfik, which means any

client could simply offload the raw evidence JSON files directly into data processing

pipeline. This option is less desired as it would require some extra fine tuning of the

components in order to have proper authentication on top of Logstash.

Note that both options 2 and 3 only consider the injection of messages into ElasticSearch. All

the remaining operations (EDIT, DELETE, etc.) would still need to be interfaced through CIMI.

Thus, the preference for workflow number 1.

With this architecture, one ensures that direct access to the ElasticSearch storage is never

directly allowed from outside the hosting machine, as its endpoint will not be exposed but

rather only available internally to the other components.

A final consideration to be made are the mappings to be applied to the ElasticSearch index(es)

that will host the evidences and other possible resources. Even though ElasticSearch is able to

infer the mapping from the submitted raw data, it is preferable to pre-define a mapping that

matches perfectly with the type of data the evidences will carry. Like this, it is possible to assign,

beforehand, certain evidences’ keywords that will be used as aggregation terms during the

data analysis stage, enhancing the querying performance.

Mapping for the Evidences Index in ElasticSearch

This mapping should match the data structure defined in section 2.1.2 and exemplified in

Appendix A, while complying with the CIMI standards. The JSON structure proposed in

Appendix B provides a base skeleton for this mapping.

3.3 EVIDENCE DISPLAY/PUBLICATION

In IT, collecting data that will never be used or read is the same as carrying dead weight which

might on a long-term impact the overall performance of the framework. For this reason, all

evidences being stored in ElasticSearch shall be made available for modifications and retrieval.

One might identify two different data visibility scopes:

 Private: whereby the evidence storage is maintained by a company which uses that

data for internal purposes only;

 Restricted: whereby the evidence storage is maintained by company or consortium,

which have created the appropriate authentication and authorization infrastructure so

that other partners and clients can make use of those evidences (an example would be,

to create a service catalogue through which end users can optimize the selection of

their cloud provider based on the auditing evidences and claims).

 EU project 731845 - European Certification Framework EU-SEC

Page 30 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

By default, the CIMI interface described above shall already provide basic operations for GET,

DELETE and EDIT resources, with proper access control.

In order for an authenticated user to search and query evidences from ElasticSearch, CIMI

queries shall be used.

One other way to visualize data is to make use of Kibana. By default, this component shall not

be publicly exposed, but can be if necessary. This approach would however make all evidences

publicly available to anonymous users as authentication is a paid feature of this software.

CIMI-defined Queries

The CIMI specification provides advanced features for manipulating results when searching

collections (groups of resources). All the resource selection parameters are specified as HTTP

query parameters. These are specified directly within the URL when using the HTTP GET

method. For the evidence storage, apart from any other custom actions, the CIMI interface shall

provide the possibility to at least:

 filter collections, e.g. ”? $filter=expression”, where “expression” is a mathematical

expression compliant with the EBNF grammar defined in the CIMI specification;

 sort collections, e.g. “$orderby=attributeName[:asc|:desc],...“ ;

 define a range of resources (paging), e.g. “?$first=number&$last=number“;

 specify a subset of a resource to be acted upon, e.g. “?$select=attributeName,...“;

 expand references to avoid repeated requests to get referenced resources, e.g.

”?$expand=attributeName,...“.

4 REFERENCES

Cimato, S. a. (2013). Towards the certification of cloud services. 9th IEEE World Congress

on Services (SERVICES).

Krotsiani, M. a. (2013). Incremental certification of cloud services. 7th International

Conference on Emerging Security Information, Systems and Technologies

(SECURWARE).

Schiffman, J. a. (2013). Cloud verifier: Verifiable auditing service for iaas clouds. 9th IEEE

World Congress on Services (SERVICES), pp. 239-246.

Stephanow, P. a. (2015). Language Classes for Cloud Service Certification Systems. 11th

IEEE World Congress on Services (SERVICES).

Stephanow, P. a. (2015). Towards continuous certification of Infrastructure-as-a-Service

using low-level metrics. 12th IEEE International Conference on Advanced and

Trusted Computing (ATC).

Stephanow, P. a. (2017). Evaluating the performance of continuous test-based cloud service

certification. 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pp. 1117-1126.

Wirth, N. (1996). Extended backus-naur form (EBNF). ISO/IEC.

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 31 of 36

Sample of a test result (and evidence) from a port scan test:

{

 "_id": "43d8f64e7251ef3d",

 "className": "de.fraunhofer.aisec.clouditor.testsuite.TestSuiteResult",

 "testId": "c1212655-2f2a-408f-96c8-03736eca52c4",

 "testCaseResults": [

 {

 "details": {

 "accessiblePorts": [

 "22",

 "80",

 "443",

 "8649"

]

 },

 "_id": "212987d337a95472",

 "source": {

 "className": "de.fraunhofer.aisec.clouditor.testcases.security.PortScanTestCase",

 "expectedPorts": [

 "22",

 "80",

 "443"

],

 "host": "10.244.250.98",

 "runAsRoot": false,

 "timeout": NumberLong(60000),

 "toolName": "nmap",

 "order": 0,

 "service": "LoadBalancer",

 "name": "PortScanTestCase"

 },

 "startTime": new Date(1502880044912),

 "endTime": new Date(1502880045286),

 "passed": true

 }

],

 "source": {

 "interval": [

 120,

 240

],

 "iteration": -1,

 "label": "normal",

 EU project 731845 - European Certification Framework EU-SEC

Page 32 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 "offset": 2,

 "randomized": true,

 "testCases": [

 {

 "className": "de.fraunhofer.aisec.clouditor.testcases.security.PortScanTestCase",

 "expectedPorts": [

 "22",

 "80",

 "443"

],

 "host": "10.244.250.98",

 "runAsRoot": false,

 "timeout": NumberLong(60000),

 "toolName": "nmap",

 "order": 0,

 "service": "LoadBalancer",

 "name": "PortScanTestCase"

 }

],

 "timeout": 60,

 "name": "TestSuite"

 },

 "startTime": new Date(1502880044912),

 "endTime": new Date(1502880045287),

 "passed": true

}

Sample of a test result (and evidence) from a TLS scan test:

{

 "_id": "1de41b1a656bf04e",

 "className": "de.fraunhofer.aisec.clouditor.testsuite.TestSuiteResult",

 "testId": "8fbaca32-a2fc-41d6-97b6-dff42761c597",

 "testCaseResults": [

 {

 "className": "de.fraunhofer.aisec.clouditor.testcases.security.TLSScanResult",

 "hasHeartBleed": false,

 "hasTLSFallbackSCSV": false,

 "isVulnerableToOpenSSLCCSInjection": false,

 "hasSecureSessionRenegotiation": true,

 "isVulnerableToCrime": false,

 "trustedCertificate": false,

 "cipherSuites": [

 "DHE-RSA-AES128-SHA256",

 "DHE-RSA-AES256-SHA256"

],

 "_id": "a9a2c8517435f06b",

 "source": {

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 33 of 36

 "className": "de.fraunhofer.aisec.clouditor.testcases.security.TLSScanTestCase",

 "expectedBlacklist": [

 "TLS_RSA_WITH_DES_CBC_SHA"

],

 "sslPort": 443,

 "host": "10.244.250.98",

 "runAsRoot": false,

 "timeout": NumberLong(60000),

 "toolName": "sslyze",

 "order": 0,

 "service": "LoadBalancer",

 "name": "TLS Security Scan"

 },

 "startTime": new Date(1502879926096),

 "endTime": new Date(1502879927335),

 "passed": false

 }

],

 "source": {

 "interval": [

 120,

 240

],

 "iteration": -1,

 "label": "normal",

 "offset": 2,

 "randomized": true,

 "testCases": [

 {

 "className": "de.fraunhofer.aisec.clouditor.testcases.security.TLSScanTestCase",

 "expectedBlacklist": [

 "TLS_RSA_WITH_DES_CBC_SHA"

],

 "sslPort": 443,

 "host": "10.244.250.98",

 "runAsRoot": false,

 "timeout": NumberLong(60000),

 "toolName": "sslyze",

 "order": 0,

 "service": "LoadBalancer",

 "name": "TLS Security Scan"

 }

],

 "timeout": 60,

 "name": "testSuite1"

 },

 "startTime": new Date(1502879926095),

 "endTime": new Date(1502879927336),

 "passed": false

 EU project 731845 - European Certification Framework EU-SEC

Page 34 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 }

EU project 731845 – European Certification Framework EU-SEC

D3.3 Architecture & Tools for Evidence V1, Dec

2017 Page 35 of 36

APPENDIX B

Proposed ElasticSearch index mapping for the test results and evidences:

{

 "_index": text, # eg: evidences

 "_type": text, # eg: test-result

 "_id": text, # We can let ES fill it. But ideally, we can set it to TestSuiteResult.testId. This makes it easier to

perform updates

 "_version": double, # default: 1

 "_score": null,

 "_source": {

 "@timestamp": date, # eg: 2017-08-15T11:43:01.798Z

 "port": long, # auto filled if using logstash

 "@version": text, # auto filled

 "host": keyword, # auto filled. should match the sinking host

 "message": {

 "id": keyword, # Can be the same as _id . eg: evidence/0ae59215-b4ce-464e-b84c-50a685da1a4b

 "name": keyword, # random string to name the test

 "description": keyword, # random text description

 "className": keyword, # eg: de.fraunhofer.aisec.clouditor.testsuite.TestSuiteResult

 "startTime": date, # human readable

 "endTime": date, # human readable

 "passed": boolean, # true or false

 "updated": date, # ~=@timestamp, unless the record is updated

 "acl": {

 "owner": {

 "principal": text, # user of the resource owner. eg: johndoe

 "type": text, # type of principal. eg: USER/ROLE/BOT

 },

 "rules": [# a nested ES field

 {

 "principal": text, # eg: little_johndoe

 "right": text, # eg: "VIEW"

 "type": text # eg: "USER"

 },

 {

 "principal": text, # eg: "Clouditor:is_admin"

 "right": text, # eg: "ALL"

 "type": text # eg: "ROLE"

 }

]

 },

 "testType": keyword, # type of test. eg: TLSScanTestCase

 "resourceURI": text, # eg: "http://clouditor.com/dev/Tests"

 # the next attribute needs further discussion of the generation and storage of claims

 EU project 731845 - European Certification Framework EU-SEC

Page 36 of 36 D3.3 Architecture & Tools for Evidence, V1 Dec 2017  

 "claim": { # a reference to the respective claim

 "href": keyword # eg: claim/e3db10f4-ad81-4b3e-8c04-4994450da9e3

 },

 "testCaseResults": [# a nested ES field

 {

 "testCase": keyword, # eg: "de.fraunhofer.aisec.clouditor.testcases.security.TLSScanResult",

 "hasHeartBleed": boolean,

 "hasTLSFallbackSCSV": boolean,

 "isVulnerableToOpenSSLCCSInjection": boolean,

 "hasSecureSessionRenegotiation": boolean,

 "isVulnerableToCrime": boolean,

 "trustedCertificate": boolean,

 "cipherSuites": text, # eg: ["DHE-RSA-AES128-SHA256", "DHE-RSA-AES256-SHA256"]

 "details": {

 "accessiblePorts": text, # can be a list like ["22","80","443"]

 }

 }

],

 "source": {

 "interval": long, # eg: [120, 240]

 "iteration": long, # eg: -1

 "label": keyword, # eg: "normal"

 "offset": long, # eg: 2

 "randomized": boolean,

 "expectedBlacklist": text, # eg: ["TLS_RSA_WITH_DES_CBC_SHA"]

 "sslPort": long, # eg: 443

 "expectedPorts": text, # eg: ["22", "80", "443"]

 "host": ip, # eg: 10.244.250.98

 "location": geo_point, # Logstash does this automatically

 "runAsRoot": boolean,

 "timeout": long, # eg: 60000

 "toolName": keyword, # eg: "nmap"

 "order": long, # eg: 0

 "service": keyword, # eg: "LoadBalancer"

 "name": keyword, # eg: "PortScanTestCase"

 "timeout": long # eg: 60

 }

 }

 }

}

