MiDAS

testing on cloud

Hillah, Maesano, De Rosa, Maesano, Lettere, Fontanelli

Service Functional
Test Automation

LIPMC 5B DEBDNLELS 50 A

Joint STV /INTUITEST Workshop @QUCAAT 2015

Background

* Modeling and Verification team in LIP6 / UPMC

* Specification, modeling and verification of distributed
systems (SPL, SPEM, test, model checking, SAT / SMT)

» DECISION team in LIP6 /UPMC

“ Theory of decision, algorithmic optimisation, OR, Al

* Healthcare Distributed Systems (DEDALUS)

+ Services Architectures, test (SEF)

Challenges

* Service Functional Testing Automation is hard

* end-to-end test of complex, distributed service architectures
« black-box (services) and grey-box (architectures)

* Configuration of the test execution system

* Constraint-based test input and oracles generation

* Intelligent dynamic scheduling of test cases

* Intelligent reactive planning of test campaigns

L X4

L X 4

0

Context

Calabria Cephalalgic
Network (headache
integrated care processes)

Multi-owner Services
Architecture, Cloud
deployment

APIs HIL7 /ONMG H55P
Standard compliant

DEDALUS in charge of
REUS, IXS, and ClE52

General

practitioner,

Specialist,
Clinic

CCN
Front

SNy

Patient

record
service

CCN
Back-
end
service

i

SSvd

SXI

Patient
identity
service

Z¢s10

Terminology
service

Security &
privacy
service

AdSOH

Healthcare

directory
service

SS

Clinical
decision
support
service

Figure 1. Calabria Cephalalgic Network.

T'esting Process and Goals

Service functional tests
A
(

|
check-in ‘ e | ‘ White-box | . | Unit (black-box) : | End to end
Compile tests tests rey-box) tests

Security Fault tolerance Performance .
al tests tests tests ’l roductiog |

Figure 2. Service integration process as a pipeline.

+ Maximise fault exposing potential, fault detection rate, and
troubleshooting efficacy

+ Improve agility, and time-to-market

The MIDAS Approach for Service Functional Testing

* Through functional test automation, provide a SaaS-based solution for:
« optimised generation of inputs and oracles

« optimised management of test suites for first testing, re-testing,
regression testing

* Techniques:
“ automated test system configuration and execution
+ automated test case generation (inputs/oracles)
» automated scheduling of test execution

+ automated reactive planning

MIDAS Functional Testing Overview

* From Input Models:
“ Service model (WSDL, XSD) - prerequisite
» Service Architecture Under Test (SAUT) model (structural) - topology of components and services
+ Protocol State Machine (PSM) model (behavioral) - behavior at the interfaces
“ business rules (pre/post conds., transfer functions)
* alternatively to PSMs, Interaction Path Models (e.g. sequence diagram)
+ Generation of Test Suites
“ Interaction paths with actuals payloads
* Scheduled execution of test suites
* Probabilistic inference for failure searching and troubleshooting
* Generation of TTCN3 library (executable)
* Scheduled execution and on-the-fly generation (planning)

* Probabilistic inference also for controlled test generation

Test Environment

20 | Patient
— | record
O | service

__ | Patient
ot {5 | ety
service

Terminology
service

Figure 3. Services architecture under test.

—————————————————————————————————————— —

-

eHealth
service
stimulator

kK »

Patient

record

service
interceptor

Patient

identity

service
interceptor

A

>

Terminology
service
interceptor

Test system

\--- L B __J

eHealth
service
build123

L BB B

SNy

Patient
record
service
build234

—

SXI

Patient
identity
Service
build345

L Zs1o

Terminology
Service
build456

SAUT

Figure 6. Test environment forend to end test.

8

Automated Test System Configuration

« Test system structure: stimulators, mocks, interceptors
+ generated from SAUT and test config. models

« SAUT: Service Components Architecture (SCA) and Service
specifications (WSDL)

¢ actual components and wires between them

« Test config. model: add virtual components (stimulators,
mocks) and virtual wires

“ interceptors for actual wires to be observed

K/
L X4

Automated Test Case Generation

PSM: Standard SCXML
documents

Conditions and transfer
functions in Javascript

Model checking using
TLA+ framework for
test input generation

PSM execution for test
oracle generation

Service
model

SAUT model

Test
configuration
model

generator
=

Protocol state
machine
model

- N

Model checker
& proof system

Test input

Test oracle
generator

Test suite
definition

Test suite #1

Test suite #2

\Test generation)

Test suite #N

Figure 7. Automated generation of test cases.

10

Test Case Generation Overview

Models 0f St R . (e
the SAUT . = Translation
[Preprocessmg » (PlusCal)

J _ =

B 4
(Generation l
o< 3)

Directives Compilation
: (TLA+) .

: G > l
Test Suite Oracle
Samples = GCenciation = [Model Checking]

Test Suite | ParallelPSM | [Testnput
Bloilgiistlaed, | | Model Execution . Generation

Automated Test Scheduling

« Cycle schedule/
execute/arbitrate

+ Choose the next
test case to run on
the basis of past
test verdicts

* Detect failures
early, and locate
faulty elements
(troubleshooting)

Service
model

SAUT model

Test
configuration
model

Test suite
definition

[

Test suite #N

1

f Test system \

| configurator

Test executor

—

- -,

Test arbitrator

NE——

(Test scheduler)

BN compiler
AC engine
Q

[Test campaign

Test log

Test report

reporter

\ Testrun)

Figure 8. Automated scheduled execution of test cases.

Prioritisation of test cases based on probabilistic reasoning

12

RequestTestScheduling([TC]) NotifyTestSchedOutcome(C)

_ I A
[TV] T [TC] STOP
‘ Ezae e
Scheduling
Policy module

<> STOP

& : / <
[evidences] T[probabilities]

4

Probabilities container

v

7 ; Inference engine
v

Automated Reactive Planning

* Scheduler not only drives the choice of the next test case
to execute, but also of the on-the-fly generation of new
test cases

« Using evidences from past test runs:

* calculates the degree of ignorance of SAUT elements
and recommends the generation of test cases whose
execution would diminish this ignorance

14

RequestTestScheduling([TC])

TC = iG]

NotifyTestSchedOutcome(C)

= T TC = TestGenDirectives.xml

& | | | =3
Service interface
- I =/
T T T Test
[TV] [TC] STOP Generation
Directives
1 \ 7 I 1 ™\
Schedu_ling Generation
Policy module '| Policy module
: <> STOP I <> :
N : : o @ : 2
[evidences] T[probabilities] T[probabnities]
= ! ! >
Probabilities container
7 ilnference engine
\ 7,

15

Functonal Testing Workflow Overview

Models of the 2 >
50 C .>
SAUT [Request } > [nit Scheduling
_ i J
lest = Test Generation Directivesl
Configuration - N
. Test
Test Suite Test Generation Directives Generation
Samples = \ | Z
Test Suitesl

Test Suite .
Deﬁnitions Verdict T@St Schedulmg]
Test Verdict Test Casel

& N

Reports ;
Test Execution

Prototype

* Test automation methods provided as services

“ can be combined in service integration and delivery
processes (continuous integration / delivery)

“ Deployed on AWS
“ Currently being evaluated by DEDALUS

17

SAUT - Example

Repository\ ! \

RLUSCDA2ReportService RLUSAL%ervice

RLUSMetadataService E iReposutory FEE I ; RLUSXE@Ser\/ice

Test Scenario FDR 01 - Should Pass

«actor»
:Portal | :Repository.RLUS I

|
I RLUSAuxReference.reset.input [

| RLUSCDAZReportReference.put.input).

lRLUSCDAZReportService.put.output J

. RLUSAuxReference.get.input

>
l..B.ky.ﬁéy?s?.enfise-.gﬁ.t.;9.9.%99? j
| |
' RLUSAuxReference.reset.input !

..

18

pe Dashboar

Test Suites Generations

0/10 2/1200
0/10 1/1200
10/10 2/1200

#requested/#generated -- time taken/timeout

Running Time
00:16:55

Task stopped at 10:17:23
Last updated at 12:35

Inconclusive Tests

0

#Total Generated Test
Suites

10

Functional Testing Dashboard
TestTask-1: Test Task Aborted

Live logs on port 28778 of this same URL. Te St Ru ns
Last updated at 12:35
Passed Tests 0
Failed Tests 0
Inconclusive Tests 0
Failed Tests # Passed Tests
M25% M25%
of tests for each possible outcome
Sched/Run Cycles More Logs
[vlrunmanager
5 “Test generator accepted abort request.”
[vJrunmanager
MP25% “Scheduler accepted abort request.”

Conclusion

“ Configuration of test system against distributed services
architectures

« Test case generation, using model checking and parallel
PSM execution

“ Intelligent dynamic test case prioritization and
scheduling

« Intelligent reactive planning of test campaign with on-
the-fly, evidence-based generation of new test cases

20

Perspectives

« REST/JSON Service testing; Application to Logistics, IoT

+ Automated check of the alignment of the SAUT deployment with the SAUT
model

+ Test oracles generated from incomplete specifications

+ Improvement of test reports for more tester-friendly readability (e.g. trace,
diffs, coverage)

* New heuristics for the scheduling (optimised testing strategies)

+ Enhance technical evaluation (automated)

Graphical Modeling IDE for integrated SAUT models (WSDL, SCA, PSM)
+ e.g. XML-based to UTP-based

21

0O&A

Thank you

