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Background

* Modeling and Verification team in LIP6 / UPMC

* Specification, modeling and verification of distributed
systems (SPL, SPEM, test, model checking, SAT / SMT)

» DECISION team in LIP6 /UPMC

“ Theory of decision, algorithmic optimisation, OR, Al

* Healthcare Distributed Systems (DEDALUS)

+ Services Architectures, test (SEF)



Challenges

* Service Functional Testing Automation is hard

* end-to-end test of complex, distributed service architectures
« black-box (services) and grey-box (architectures)

* Configuration of the test execution system

* Constraint-based test input and oracles generation

* Intelligent dynamic scheduling of test cases

* Intelligent reactive planning of test campaigns
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Figure 1. Calabria Cephalalgic Network.




T'esting Process and Goals
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Figure 2. Service integration process as a pipeline.

+ Maximise fault exposing potential, fault detection rate, and
troubleshooting efficacy

+ Improve agility, and time-to-market



The MIDAS Approach for Service Functional Testing

* Through functional test automation, provide a SaaS-based solution for:
« optimised generation of inputs and oracles

« optimised management of test suites for first testing, re-testing,
regression testing

* Techniques:
“ automated test system configuration and execution
+ automated test case generation (inputs/oracles)
» automated scheduling of test execution

+ automated reactive planning



MIDAS Functional Testing Overview

* From Input Models:
“ Service model (WSDL, XSD) - prerequisite
» Service Architecture Under Test (SAUT) model (structural) - topology of components and services
+ Protocol State Machine (PSM) model (behavioral) - behavior at the interfaces
“ business rules (pre/post conds., transfer functions)
* alternatively to PSMs, Interaction Path Models (e.g. sequence diagram)
+ Generation of Test Suites
“ Interaction paths with actuals payloads
* Scheduled execution of test suites
* Probabilistic inference for failure searching and troubleshooting
* Generation of TTCN3 library (executable)
* Scheduled execution and on-the-fly generation (planning)

* Probabilistic inference also for controlled test generation



Test Environment
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Figure 3. Services architecture under test.

—————————————————————————————————————— —

-

eHealth
service
stimulator

kK »

Patient

record

service
interceptor

Patient

identity

service
interceptor

A

>

Terminology
service
interceptor

Test system

-----------

\--- L B __J

eHealth
service
build123

L BB B

SNy

Patient
record
service
build234

—

SXI

Patient
identity
Service
build345

L Zs1o

Terminology
Service
build456

SAUT

Figure 6. Test environment forend to end test.
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Automated Test System Configuration

« Test system structure: stimulators, mocks, interceptors
+ generated from SAUT and test config. models

« SAUT: Service Components Architecture (SCA) and Service
specifications (WSDL)

¢ actual components and wires between them

« Test config. model: add virtual components (stimulators,
mocks) and virtual wires

“ interceptors for actual wires to be observed
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Automated Test Case Generation

PSM: Standard SCXML
documents

Conditions and transfer
functions in Javascript
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Figure 7. Automated generation of test cases.
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Test Case Generation Overview
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Automated Test Scheduling

« Cycle schedule/
execute/arbitrate

+ Choose the next
test case to run on
the basis of past
test verdicts

* Detect failures
early, and locate
faulty elements
(troubleshooting)
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Figure 8. Automated scheduled execution of test cases.

Prioritisation of test cases based on probabilistic reasoning
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Automated Reactive Planning

* Scheduler not only drives the choice of the next test case
to execute, but also of the on-the-fly generation of new
test cases

« Using evidences from past test runs:

* calculates the degree of ignorance of SAUT elements
and recommends the generation of test cases whose
execution would diminish this ignorance
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Functonal Testing Workflow Overview
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Prototype

* Test automation methods provided as services

“ can be combined in service integration and delivery
processes (continuous integration / delivery)

“ Deployed on AWS
“ Currently being evaluated by DEDALUS
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SAUT - Example
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pe Dashboar
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Conclusion

“ Configuration of test system against distributed services
architectures

« Test case generation, using model checking and parallel
PSM execution

“ Intelligent dynamic test case prioritization and
scheduling

« Intelligent reactive planning of test campaign with on-
the-fly, evidence-based generation of new test cases

20



Perspectives

« REST/JSON Service testing; Application to Logistics, IoT

+ Automated check of the alignment of the SAUT deployment with the SAUT
model

+ Test oracles generated from incomplete specifications

+ Improvement of test reports for more tester-friendly readability (e.g. trace,
diffs, coverage)

* New heuristics for the scheduling (optimised testing strategies)

+ Enhance technical evaluation (automated)

# Graphical Modeling IDE for integrated SAUT models (WSDL, SCA, PSM)
+ e.g. XML-based to UTP-based
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