
Hillah, Maesano, De Rosa, Maesano, Lettere, Fontanelli

Service Functional
Test Automation

UPMC, SEF, DEDALUS S.p.A

Joint STV/INTUITEST Workshop @UCAAT 2015

Background
❖ Modeling and Verification team in LIP6/UPMC

❖ Specification, modeling and verification of distributed
systems (SPL, SPEM, test, model checking, SAT / SMT)

❖ DECISION team in LIP6/UPMC

❖ Theory of decision, algorithmic optimisation, OR, AI

❖ Healthcare Distributed Systems (DEDALUS)

❖ Services Architectures, test (SEF)

2

Challenges

❖ Service Functional Testing Automation is hard

❖ end-to-end test of complex, distributed service architectures

❖ black-box (services) and grey-box (architectures)

❖ Configuration of the test execution system

❖ Constraint-based test input and oracles generation

❖ Intelligent dynamic scheduling of test cases

❖ Intelligent reactive planning of test campaigns

3

Context
❖ Calabria Cephalalgic

Network (headache
integrated care processes)

❖ Multi-owner Services
Architecture, Cloud
deployment

❖ APIs HL7/OMG HSSP
Standard compliant

❖ DEDALUS in charge of
RLUS, IXS, and CTS2

4

Testing Process and Goals

❖ Maximise fault exposing potential, fault detection rate, and
troubleshooting efficacy

❖ Improve agility, and time-to-market
5

The MIDAS Approach for Service Functional Testing

❖ Through functional test automation, provide a SaaS-based solution for:

❖ optimised generation of inputs and oracles

❖ optimised management of test suites for first testing, re-testing,
regression testing

❖ Techniques:

❖ automated test system configuration and execution

❖ automated test case generation (inputs/oracles)

❖ automated scheduling of test execution

❖ automated reactive planning

6

MIDAS Functional Testing Overview
❖ From Input Models:

❖ Service model (WSDL, XSD) - prerequisite

❖ Service Architecture Under Test (SAUT) model (structural) - topology of components and services

❖ Protocol State Machine (PSM) model (behavioral) - behavior at the interfaces

❖ business rules (pre/post conds., transfer functions)

❖ alternatively to PSMs, Interaction Path Models (e.g. sequence diagram)

❖ Generation of Test Suites

❖ Interaction paths with actuals payloads

❖ Scheduled execution of test suites

❖ Probabilistic inference for failure searching and troubleshooting

❖ Generation of TTCN3 library (executable)

❖ Scheduled execution and on-the-fly generation (planning)

❖ Probabilistic inference also for controlled test generation

7

Test Environment

8

Automated Test System Configuration
❖ Test system structure: stimulators, mocks, interceptors

❖ generated from SAUT and test config. models

❖ SAUT: Service Components Architecture (SCA) and Service
specifications (WSDL)

❖ actual components and wires between them

❖ Test config. model: add virtual components (stimulators,
mocks) and virtual wires

❖ interceptors for actual wires to be observed

9

Automated Test Case Generation
❖ PSM: Standard SCXML

documents

❖ Conditions and transfer
functions in Javascript

❖ Model checking using
TLA+ framework for
test input generation

❖ PSM execution for test
oracle generation

10

Test Case Generation Overview

Preprocessing
Translation
(PlusCal)

Compilation
(TLA+)

Model Checking

Test Input
Generation

Parallel PSM
Model Execution

Oracle
Generation

Models of
the SAUT

Generation
Directives

Test Suite
Definition

Test Suite
Samples

Automated Test Scheduling
❖ Cycle schedule/

execute/arbitrate

❖ Choose the next
test case to run on
the basis of past
test verdicts

❖ Detect failures
early, and locate
faulty elements
(troubleshooting)

12
Prioritisation of test cases based on probabilistic reasoning

[TC][TV]

[evidences] [probabilities]

STOP

STOP

Inference engine

Service interface

Scheduling
Policy module

Probabilities container

RequestTestScheduling([TC]) NotifyTestSchedOutcome(C)

C = [TC] C = ∅

Automated Reactive Planning

❖ Scheduler not only drives the choice of the next test case
to execute, but also of the on-the-fly generation of new
test cases

❖ Using evidences from past test runs:

❖ calculates the degree of ignorance of SAUT elements
and recommends the generation of test cases whose
execution would diminish this ignorance

14

[TC][TV]

[evidences] [probabilities] [probabilities]

STOP

STOP
Test

Generation
Directives

Inference engine

Service interface

Scheduling
Policy module

Generation
Policy module

Probabilities container

RequestTestScheduling([TC]) NotifyTestSchedOutcome(C)

C = [TC] C = ∅ C = TestGenDirectives.xml

15

Functional Testing Workflow Overview

Request Init Scheduling

Test
Generation

Test Scheduling

Test Execution

Models of the
SAUT

Test
Configuration

Test Suite
Definitions

Test Suite
Samples

Test Verdict
Reports

Logs

Verdict

Test Generation Directives

Test Case

Test Suites

Test Generation Directives

Prototype

❖ Test automation methods provided as services

❖ can be combined in service integration and delivery
processes (continuous integration / delivery)

❖ Deployed on AWS

❖ Currently being evaluated by DEDALUS

17

SAUT - Example

18

Prototype Dashboard

Conclusion
❖ Configuration of test system against distributed services

architectures

❖ Test case generation, using model checking and parallel
PSM execution

❖ Intelligent dynamic test case prioritization and
scheduling

❖ Intelligent reactive planning of test campaign with on-
the-fly, evidence-based generation of new test cases

20

Perspectives
❖ REST/JSON Service testing; Application to Logistics, IoT

❖ Automated check of the alignment of the SAUT deployment with the SAUT
model

❖ Test oracles generated from incomplete specifications

❖ Improvement of test reports for more tester-friendly readability (e.g. trace,
diffs, coverage)

❖ New heuristics for the scheduling (optimised testing strategies)

❖ Enhance technical evaluation (automated)

❖ Graphical Modeling IDE for integrated SAUT models (WSDL, SCA, PSM)

❖ e.g. XML-based to UTP-based

21

Q & A

Thank you

