The need for reliable, ubiquitous connectivity:

- Insufficient coverage for mobile connectivity:
 - Coverage of (terrestrial) white spots
 - Automotive: Autonomous driving
 - Maritime: Cruise ships, offshore platforms
 - Aerospace: Passenger aircraft
- Temporarily / locally insufficient capacity:
 - Agriculture
 - Construction areas
 - Cultural and sports events
 - Disaster recovery
Unified 3D Networks

Unified processing platforms for network functions on different heights

SPACE SEGMENT
- Multi-orbit satellites

AIR SEGMENT
- HAPS: Stratospheric airplanes, balloons
- LAPS: Drones

GROUND SEGMENT
- Terrestrial sites
- User equipment
- Customer premises equipment

3D Networks

Different properties with respect to:
- Performance: Coverage, capacity, data rate / link budget, latency, processing capabilities
- Geography / economics: Global business model needed for LEOs, local business model sufficient for HAPS
- Flexibility, mobility: Dynamically deploy or recall nodes, dynamically adjust coverage areas

4G & Before
Design optimized independently and exclusively for terrestrial networks

5G & B5G
Design optimized for terrestrial network component. Minimum impact to support integration of satellite for coverage and availability extension

6G & Beyond
Design optimized for both terrestrial and space components against a set of common goals

Key challenges:
- Nodes can join/leave network dynamically
- Security requirement: authentication of joining nodes
- Connectivity management for air interface and backhaul
- Dynamic reallocation of network functions
- Steerable high-gain antenna systems
- Reconfigurable hardware/microelectronics

Novel Network Architecture:
- 3D: Ground, LAPS, HAPS, LEO, GEO
- Organic behaviour

Key Technologies:
- Dynamic connectivity management and allocation of network functions
- AI-driven automatic operation

Key Components:
- Innovative antennas and processing platforms

The infrastructures of 3D Networks will be moving

Unified design 2030

Terrestrial networks

Satellite networks

Airborne networks

Integrated design

The infrastructures of 3D Networks will be moving

Key challenges:
- Nodes can join/leave network dynamically
- Security requirement: authentication of joining nodes
- Connectivity management for air interface and backhaul
- Dynamic reallocation of network functions
- Steerable high-gain antenna systems
- Reconfigurable hardware/microelectronics

Novel Network Architecture:
- 3D: Ground, LAPS, HAPS, LEO, GEO
- Organic behaviour

Key Technologies:
- Dynamic connectivity management and allocation of network functions
- AI-driven automatic operation

Key Components:
- Innovative antennas and processing platforms