
Martin A. Schneider

Leon Bornemann

STV, Octobre 19th 2015

SECURITY TESTING OF

WSDL-BASED WEB SERVICES WITH FUZZING

2
© Fraunhofer FOKUS

Web services

1. provide a permanent attack surface to the public through the Internet.

2. provide a lot of information about their interface via formalized descriptions, e.g.

WSDL and XML Schema.

3. are often part of a complex service infrastructures and may constitute a gateway to

the physical world, e.g. in the logistics domain.

4. process and store sensitive data, in particular health data.

Therefore, security testing of web services is a inevitable.

MOTIVATION

3
© Fraunhofer FOKUS

1. Fuzzing

– Introduction

– Data Fuzzing

– Behavioral Fuzzing

2. Scheduling for Security Testing

– Negative Input Space Complexity Metric

3. Verdict arbitration for Security Testing

OUTLINE

FUZZING

© Fraunhofer FOKUS

5

Introduction

 Fuzzing is about injecting invalid or unexpected inputs

 to obtain unexpected behaviour

 to identify errors and potential vulnerabilities

 Interface robustness testing

 Fuzzing is able to find (0day-)

vulnerabilities, e.g.

 crashes

 denial of service

 security exposures

 performance degradation

 highly-automated black box approach

© Fraunhofer FOKUS

FUZZING

positive
input
space

negative input
space,
target of fuzzing

target of e.g.
functional testing

see also: Takanen, A., DeMott, J., Miller, C.:

Fuzzing for Software Security Testing and

Quality Assurance. Artech House, Boston (2008)

6

 Random-based fuzzers generate randomly input data. They don’t know nearly

anything about the SUT’s protocol.

fuzzed input: HdmxH&k dd#**&%

 Template-based fuzzers uses existing traces (files, …) and fuzzes some data.

template: GET /index.html

fuzzed input: GE? /index.html, GET /inde?.html

 Block-based fuzzers break individual protocol messages down in static (grey) and

variable (white) parts and fuzz only the variable part.

fuzzed input: GET /inde?.html, GET /index.&%ml

 Dynamic Generation/Evolution-based fuzzers learn the protocol of the SUT from

feeding the SUT with data and interpreting its responses, for example using

evolutionary algorithms.

 Model-based Fuzzers

INTRODUCTION TO FUZZING: CATEGORIZATION

GET /index.html
only the (white) part gets fuzzed

d
u

m
b

 s
m

a
rt

7

MODEL-BASED FUZZING

Model-Based Fuzzers

 Model-based fuzzers uses models of

the input domain (protocol models,

e.g. context free grammars), for

generating systematic non-random

test cases

 The model is used to generate

complex interaction with the SUT.

 Employ fuzzing heuristics to reduce

the input space of invalid and

unexpected inputs

 Model-based fuzzers finds defects

which human testers would fail to find.

© Fraunhofer FOKUS

NEGATIVE INPUT SPACE POSITIVE INPUT SPACE

VULNERABILITIES

Model-Based Fuzzing

Random Fuzzing

unexpected
inputs, e.g.
SQL injection

SP
EC

IF
IC

IE
D

 IN
P

U
T

SP
A

C
E

invalid inputs,
e.g. buffer

overflow

WhatsApp Crash
Code, OSVDB-ID:

105786

8

Fuzzing Library Fuzzino

 make traditional data fuzzing widely available

 allow an easy integration into existing tools

 without deep knowledge about fuzz data generation

 allow data fuzzing without the need for

 making familiar with a specific fuzzing tool

 integrating further fuzzing tools into the test process

 approach: didn’t reinvent the wheel, used the potential of existing fuzzing tools

Peach Sulley

© Fraunhofer FOKUS

DATA FUZZING

9

XSD Type Descriptions

<xsd:simpleType name="String1000Type">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="1000"/>

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="GIAIType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[-!"%&'()*+,./0-9:;<=>?A-Z_a-z]{4,30}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="GRAIType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{14}[-!"%&'()*+,./0-9:;<=>?A-Z_a-z]{0,16}"/>

</xsd:restriction>

</xsd:simpleType>

© Fraunhofer FOKUS

DATA FUZZING

10

Fuzzing Library Fuzzino

 test case generation on model level

 UML profile for data fuzzing

 automated selection of heuristics

 test data generation on TTCN-3 level

 primitive types with simple constraints, e.g. length

 based on regular expressions (transformation to grammar)

 integration with the test execution on TTCN-3 level

 external functions constitute the interface to Fuzzino

© Fraunhofer FOKUS

DATA FUZZING

11

Data & Behavioural Fuzzing

 Traditional data fuzzing generates invalid input data to find vulnerabilities in the SUT.

 Behavioural fuzzing complements traditional fuzzing by not fuzzing only input data of

messages but changing the appearance and order of messages, too.

 The motivation for the idea of behavioural fuzzing is that vulnerabilities cannot only be

revealed when invalid input data is accepted and processed but also when invalid

sequences of messages are accepted and processed.

 A real-world example is given in [1] where a vulnerability in Apache web server was found by

repeating the host message for an HTTP request.

[1] Takahisa, K.; Miyuki, H.; Kenji, K.: "AspFuzz: A state-aware protocol fuzzer based on application-layer protocols," Computers and

Communications (ISCC), 2010 IEEE Symposium on , vol., no., pp.202-208, 22-25 June 2010

© Fraunhofer FOKUS

BEHAVIORAL FUZZING

12

Model-Based Behavioural Fuzzing

 Test cases are generated by fuzzing valid sequences, e.g. functional test cases.

 Behavioural fuzzing is realized by changing the order and appearance of messages in

two ways

 By rearranging messages directly. This enables straight-lined sequences to be

fuzzed.

 By modifying control structures of UML 2.x sequence diagrams

 Invalid sequences are generated by applying fuzzing operators to a valid sequence.

© Fraunhofer FOKUS

MODEL-BASED FUZZING

Client SUT

1: authenticate(…)

2: protected_function(…)

valid sequence

Remove
Message

1:
authenticate

Behavioural
Fuzzing

Fuzzer SUT

1: protected_function(…)

invalid sequence

13

one deviation a few deviations many deviations

ra
n

d
o

m

• remove message

• repeat message

• change type of

message

• insert message

• move message

• swap messages

• permute messages

regarding single SUT

lifeline

• permute messages

regarding several

SUT lifelines

s
m

a
rt

• negate interaction

constraint

• change bounds of

loop

• change

time/duration

constraint

• interchange interaction

constraints

• disintegrate combined

fragment

• change interaction

operator

• move combined

fragment

• remove combined

fragment

• repeat combined

fragment

CLASSIFICATION OF FUZZING OPERATORS

A Negative Input Space Complexity Metric [1]

[1] Schneider, M. A., Wendland, M.-F., Hoffmann, A.: A Negative Input Space Complexity Metric as Selection Criterion for Fuzz Testing.

To appear in: 27th IFIP WG 6.1 International Conference ICTSS 2015 Proceeding, ser. LNCS, K. El-Fakih, G. Barlas, N. Yevtushenko, Eds.,

vol. 9447. Springer, 2015, pp. 1–6 © Fraunhofer FOKUS

SCHEDULING FOR SECURITY TESTING

15
© Fraunhofer FOKUS

Challenge

• Generally, fuzz test case generation leads to a large number of test cases.

• How to select the relevant test cases?

Solution

• By restricting fuzzing to most error prone parts, the number of test cases can be

reduced to a reasonable set without missing too many security-relevant weaknesses.

• Cataldo et al. [Ca10] investigated interface complexity, operation argument

complexity and error proneness and found a statistically significant correlation.

• We suppose this correlation holds true for security-relevant errors as well.

• By adapting their metrics to the negative input space, an error proneness metric for

data fuzzing can be established.

NEGATIVE INPUT SPACE COMPLEXITY METRIC

[Ca10] Cataldo, M., de Souza, C.R.B., Bentolila, D.L, Miranda, T.C., Nambiar, S. (2010).

The impact of interface complexity on failures: an empirical analysis and implications for tool

design. Carnegie Mellon University. Technical Report CMU-ISR-10-100.

16
© Fraunhofer FOKUS

• Calendar date example

leap year condition: 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 4 = 0 ∨ 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 100 ! = 0 ∨ 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 400 = 0

• A negative input space complexity metric has to consider the constraints that dinstinguish

valid and invalid input data.

NEGATIVE INPUT SPACE COMPLEXITY METRIC

17
© Fraunhofer FOKUS

• A negative input space complexity metric has to consider the constraints that dinstinguish

valid and invalid input data.

• a static boundary is defined by an expression that does not contain any variable

despite that one whose value shall be decided whether it is valid or not,

e.g. 𝑚𝑜𝑛𝑡ℎ > 0 𝑚𝑜𝑛𝑡ℎ < 13

• a dynamic boundary depends on other variables, e.g. parts of a given input data, in

order to determine if a provided data is valid

e.g. 𝑑𝑎𝑦 < 29 ∧ 𝑚𝑜𝑛𝑡ℎ = 2

NEGATIVE INPUT SPACE COMPLEXITY METRIC

18
© Fraunhofer FOKUS

• Dynamic boundary

• number of involved variables

• complexity of the constraints measured in terms of height of the abstract syntax

tree

• examples

1 for the expression 𝑑𝑎𝑦 < 29 ∧ 𝑚𝑜𝑛𝑡ℎ = 2

2 for the expression 𝑑𝑎𝑦 < 31 ∧ 𝑚𝑜𝑛𝑡ℎ = 4 ∨ 𝑚𝑜𝑛𝑡ℎ = 6 ∨ 𝑚𝑜𝑛𝑡ℎ = 9 ∨ 𝑚𝑜𝑛𝑡ℎ =

NEGATIVE INPUT SPACE COMPLEXITY METRIC

m = 𝑏𝑠𝑡𝑎𝑡 +

𝑖=1

𝑏𝑑𝑦𝑛

𝑣𝑎𝑟𝑠𝑖 ∙ ℎ𝑒𝑖𝑔ℎ𝑡𝐴𝑆𝑇

19
© Fraunhofer FOKUS

𝑑𝑎𝑦 < 29 ∧ 𝑚𝑜𝑛𝑡ℎ = 2 ∨

𝑑𝑎𝑦 < 31 ∧ 𝑚𝑜𝑛𝑡ℎ = 4 ∨ 𝑚𝑜𝑛𝑡ℎ = 6 ∨ 𝑚𝑜𝑛𝑡ℎ = 9 ∨ 𝑚𝑜𝑛𝑡ℎ = 11 ∨
𝑑𝑎𝑦 < 32 ∧ 𝑚𝑜𝑛𝑡ℎ = 1 ∨ 𝑚𝑜𝑛𝑡ℎ = 3 ∨ 𝑚𝑜𝑛𝑡ℎ = 5 ∨ 𝑚𝑜𝑛𝑡ℎ = 7 ∨ ⋯

leap year: 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 4 = 0 ∨ 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 100 ! = 0 ∨ 𝑦𝑒𝑎𝑟 𝑚𝑜𝑑 400 = 0

𝑏𝑠𝑡𝑎𝑡 = 1𝑑𝑎𝑦_𝑙𝑜𝑤𝑒𝑟 + 1𝑚𝑜𝑛𝑡ℎ_𝑙𝑜𝑤𝑒𝑟 + 1𝑚𝑜𝑛𝑡ℎ_𝑢𝑝𝑝𝑒𝑟 = 3

𝑏𝑑𝑦𝑛 = 1𝑑𝑎𝑦_𝑢𝑝𝑝𝑒𝑟 = 1
𝑣𝑎𝑟𝑠1 = 1𝑚𝑜𝑛𝑡ℎ + 1𝑦𝑒𝑎𝑟 = 2

ℎ𝑒𝑖𝑔ℎ𝑡𝐴𝑆𝑇 = 3𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟𝑠 + 2𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟𝑠 = 5

𝑚 = 3 + 2 ∙ 5 = 13

NEGATIVE INPUT SPACE COMPLEXITY METRIC: EXAMPLE

m = 𝑏𝑠𝑡𝑎𝑡 +

𝑖=1

𝑏𝑑𝑦𝑛

𝑣𝑎𝑟𝑠𝑖 ∙ ℎ𝑒𝑖𝑔ℎ𝑡𝐴𝑆𝑇

20
© Fraunhofer FOKUS

• difference GIAIType and GRAIType results from the \d

• interesting starting point for fuzz testing

• Scheduling of fuzz test cases according to the metric results

EXAMPLES FROM LOGISTICS PILOT

VERDICT ARBITRATION SECURITY TESTING

© Fraunhofer FOKUS

22
© Fraunhofer FOKUS

• different as done for functional testing

• cannot rely on the response of the SUT: What response can be expected to a malicious

stimulus

• pass: ignored, error message

• fail: depends on the vulnerability

• partial solution: valid case instrumentation

• execute functional test case(s) after each fuzz test case

• select functional test case(s) carefully (false negatives/positives)

VERDICT ARBITRATION

23

 The goal of the MIDAS project is to design and build a test automation facility

that targets SOA implementations

 Test methods are implemented as

services

 functional testing

 usage-based testing

 security testing

 TTCN-3

 Application and evaluation on case studies

from two domains

 Logistics

 Healthcare

EVALUATION ON USE CASES WITHIN MIDAS PROJECT

24
© Fraunhofer FOKUS

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

www.fokus.fraunhofer.de

Martin A. Schneider

Scientist

martin.schneider@fokus.fraunhofer.de

Phone +49 (0)30 3463-7383

CONTACT

