
Reducing implementation efforts in continuous
auditing certification via an Audit API

1st Dorian Knoblauch
Fraunhofer FOKUS

Berlin, Germany
dorian.knoblauch@fokus.fraunhofer.de

2nd Christian Banse
Fraunhofer AISEC

Garching b. München, Germany
christian.banse@aisec.fraunhofer.de

Abstract—Continuous auditing reduces the frequency in which
compliance is verified. This results in more trustworthiness for
the cloud service and therefore lowers the barrier of adopt-
ing cloud for customers in high-risk sectors such as banking.
However, implementing continuous auditing as of today is a
tedious task and not standardized, which leaves the service
providers implementing the whole audit process and the technical
infrastructure. We are proposing a solution for this problem
by defining a standardized way of establishing the continuous
auditing process for an IT infrastructure as well as providing the
necessary tools as a reference implementation. In this paper we
present how complexity in setting up the technical requirements
for continuous auditing can be highly reduced by providing an
easy to implement Audit API and continuous auditing method-
ology.

Index Terms—Cloud, auditing, continuous, api

I. INTRODUCTION

National and international security standards, such as the
ISO 27001 family1 comprise a set of controls defining mini-
mum security requirements for IT services. These are often
high level and have to be individually operationalized for
each implementing organization. The implementation of said
standards as well as the assessment if the implementation
is correct and effective is a potentially complex and cost-
intensive tasks. External audits are the usual way to get a third
party approval on the performed security efforts. The external
auditor has to substantiate whether an operationalization of a
high-level requirement was performed, i.e. the auditee must
prove that certain controls are in place in an information
security management system (ISMS) [5]. Additionally, an
auditor determines if the execution is compliant with the
current standard. The high-level approach is state-of-the-art in
audit-based “point-in-time”-certifications, which usually have
a validity of several years. It is, however, a huge limiting factor
when thriving for a more continuous or even automated as-
sessment of the compliance status and therefore a certification
that is based on a more up to date assessment.

The current security certification landscape consists of certi-
fication schemes that mostly require annual or bi-annual audits
to obtain or prolong a certification. In certain markets and
areas, this does not reflect the rapid technological change or
the high demanding regulatory requirements. Enforce a higher

1https://www.iso.org/isoiec-27001-information-security.html

audit frequency will improve this situation by increasing the
level of trust but will introduce more costs due to more
audits that have to be performed. The challenge is to decrease
the complexity of these assessment and therefore the audit
process. A decreased complexity will also allow automating
a significant part of the assessment. First steps towards these
goals have also been proposed by the Cloud Security Alliance,
which has announced STAR Continuous in beginning of 2019.
Specifically the STAR Continuous Self Assessment, which
provides a way for cloud service provider to regularly perform
a self assessment based on the Cloud Control Matrix (CCM)
[4] catalog of security controls. Furthermore, initiatives such
as the European H2020 project EU-SEC2 aim to addresses the
challenge of reducing the complexity of the assessments and
introduce automation in the audit process.

The foundation of our work lays in a methodology for
breaking down high-level controls into atomic and easy-to-
evaluate attributes as well as an automated and tool-supported
human assessment that allows for a much higher audit fre-
quency than traditional “point-in-time”-audits. Additionally,
the definition of these attributes and metrics help developers in
building tools that will perform the majority of the assessment.
Our developed architecture facilitates these tools as well as
the parts of the process that still have to be implemented by
the service provider. We have defined precise interfaces which
define the service providers obligation and the ones performed
by auditing tools.

II. RELATED WORK

Research into the certification of cloud services and espe-
cially its automation has been conducted for several years. In
2013, Cimato et al. introduced the concept and initial design
proposal for cloud service certification [3]. Following up on
this work, Anisetti et al. [2] [1] proposed a test-based scheme
for the automation of certification. However, the introduction
of automation results in a gap between what has to be checked
and what can be checked.

Stephanow and Kunz [6] addressed this gap by redesigning
the traditional certification process. This differs from our
approach since we are not changing the certification process;
in fact, we are trying to take traditional certification schemes

2https://www.sec-cert.eu



as a foundation. Stephanow and Kunz are adding suitable
tooling to support continuous certification of cloud services,
for example, further detailed in their service-specific work
about security testing of web applications [8] as well as
continuously assessing the location of IaaS components [9].
While our approach requires the same kind of tooling, we are
trying to follow a more universal solution, instead of focusing
on individual service and delivery models.

Lins, Schneider and, Sunyaev [7] are proposing a conceptual
CA architecture that is partly similar to ours. We share similar
views on the relation between cloud service and auditor entity,
but we have extended this approach by defining a precise API
for exchanging evidence and have also taken the certification
authority into account. Our approach is functional and not
conceptual.

III. FRAMEWORK ARCHITECTURE

Continuous auditing requires a specific suitable architec-
ture that is capable of facilitating both automated and non-
automated assessments. The nature of auditing and certifica-
tion is trust via third party involvement. As different parts of
the audit and certification processes are performed by different
parties the architect has to reflect that modular aspect. From
a high level view the procedures can be separated into a
preparation phase and the four execution phases (see Fig. 1).
The architecture for continuous auditing has to facilitate the
data gathering and processing as well as the data flow itself.
The elements of the preparation phase are the inputs for the
execution phases and result in a state of compliance. The
objectives, attributes, metrics, frequencies and the scope are
utilized in the execution phases to process the infrastructure
data and the manual assessments to a compliance statement.
The actual execution has to be implemented by the tools that
are used for continuous auditing.

A. Preparation Phase

Our continuous auditing approach is independent of the
applied security standards and requirements. Which means
that each control that is subject to a traditional “point-in-
time”-certification and is checked in this context can also be
assessed by continuous auditing. Usually, an auditor makes the
assessment based on the control, which is present in a running

text form. This makes continuous manual assessment harder
as it requires constant interpretation of the text and it even
makes automated assessment impossible. Our approach solves
this problem by breaking down the controls into small easy to
asses and even computable attributes. This breakdown model
views security controls as a set of objectives, called Service
Level Objectives (SLO) and Service Qualitative Objectives
(SQO), similarly to what happens when defining Service Level
Agreements. Objectives are essentially constraints defined on
the basis of security attributes of an information system. To
verify that a certain security control is in place a company
should verify that the associated objectives are met.

Partly this task is also subject to a traditional point-in-time
audit as it includes defining objectives, but in this case, it
is focused on also making the assessment of objectives fully
or partly automated. Taking a requirement like the need for
encryption as an example, which is usually implemented in
every aspect of the service where it is needed according to
aspects like risk exposure and regulation, we end up with
a set of objectives which define precisely what parts of the
service require what kind of encryption. To assess the rightful
implementation, i.e. if the objectives are fulfilled, an auditor
would perform a code review, interview the developer or
examine a penetration test report. This is the part where
continuous auditing provides improvement in efficiency. Other
than reassessing whole set of controls, continuous auditing
only demands to do an assessment of atomic aspects of each
control. For each aspect a suitable measurement will be defined
and executed in a reasonable frequency.

One key element of continuous auditing is the definition
of those measurable attributes and objectives that describe a
security control, as show in Fig. 2 (Blue):

• Each control framework consists of multiple controls,
which are designed to give assurance on the fulfillment
of a requirement.

• When preparing for continuous auditing, each one of
those controls has to be described via its characterizing
objectives, namely SLOs and SQOs.

• Objectives are described as constraints on one or more
security or privacy attributes; each attribute makes an
aspect of the objective assessable. By assessing all those

Fig. 1. Model of continuous auditing phases



Fig. 2. Conceptual UML model for continuous auditing

attributes, we can provide an evaluation on the achieve-
ment of the objective.

It is also important to note that security controls are context
specific. Their implementations vary depending on the speci-
ficity of the risk appetite and technological environment of
the CSP. Moreover, some controls are meant to satisfy policy
requirements, others to verify procedures such as incident
management procedures and others are meant to verify specific
technical implementations. Consequently, the frequency with
which each control should be assessed varies greatly. An
example for short frequency would be the control for an
effective Identity Access Management where constant accesses
demand a higher frequency.

A measurement (Green in Fig. 2) provides a qualification or
quantification of an attribute. In this context, the measurement
process consists of three elements:

• Evidence can be considered as the input in a measure-
ment. Evidence can be as simple as a plain number or as
complex as a large unstructured document. The kind of
evidence often defines whether it is suitable for automated
reasoning on an attribute or if its complexity requires a
human interpretation. In an automated environment, the
evidence is produced either via monitoring of already
produced data or via a specific test. Those tests are often
conducted by specific test suites, manually written scripts
or enterprise-targeted security monitoring solutions. In
the case of evidence that requires human interpretation
the number of sources is much broader in a sense that
even a screenshot or documentation can be considered as
valid evidence.

• Metric is a standard for a measurement. It defines the
function that transforms the evidence into the measure-
ment result. By doing so it implicitly gives it a unit and,
in most cases, it normalizes the output by returning a
ratio or percentage value. Therefore, the metric requires
a qualifiable or quantifiable measurable evidence to pro-
duce the result in an unambiguous manner.

• Measurement result refers to the output of the metric and
does allow to reason on an attribute and ultimately on a
control or objective.

Metrics provide knowledge about the characteristics and at-

tributes of an IT infrastructure, through units, rules and the
values from the analysis of the evidence. The evidence is
processed into a measurement result via a metric.

Coming back to the encryption example, this means that
each objective such as encryption of data in transit has to
be defined by suitable measurements like an automated check
if the correct TLS configuration is applied. For an objective
that requires to store assets in an encrypted way, possible
measurements could be to check if the hard drive where the
data is stored is encrypted correctly or even to check if the
data itself is encrypted on the application layer.

B. Process of Operationalization

In the preparation phase, the proper operationalization of
the selected set of controls takes place. Key actions in this
phase are the definition of the scope, the identification of
the objectives (SQO, SLO) associated to each control, the
determination of the frequencies at which each objective
should be checked, the definition of attributes and metrics,
as well as the identification of points where the measurements
should be taken.

The scheme defines the following procedure for each control
of a security framework:

1) According to the comprehensiveness and the coverage of
a control a set of matching objectives has to be defined.
a Objectives that describe a specific quantitative charac-

teristic, where the value follows interval scale or ratio
scale have to be defined as Service Level Objectives
(SLO).

b Objectives that describe a specific qualitative charac-
teristic, where the value follows the nominal scale or
ordinal scale have to be defined as Service Qualitative
Objectives (SQO).

2) Each Objective is described by defining attributes. Those
attributes are more specific than an objective and do
reflect just one measurable aspect of an objective. They
are determinable via either a qualitative or a quantitative
aspect.

3) Each attribute has to be assigned to a measurement
procedure, which will provide a measurement result that
describes the state of the attribute. Metrics have to be



suitable for the infrastructure of the organization as well
as the attributes characteristic.
a The evidence is obtained on the infrastructure by

performing measurements and stored in the evidence
store.

b The measurement is then performed according to the
metric.

c The measurement result expresses a qualitative or
quantitative assessment of an attribute.

Following the encryption example, the breakdown might
look like this:

• Requirement: Data has to be encrypted
– SQO: Data is encrypted at rest
∗ Attribute 1: Encryption algorithm used for data
∗ Attribute 2: Encryption used for hard drive

– SQO: Data is encrypted in transit
∗ Attribute 1: Encryption used for send data
∗ Attribute 2: Configuration of TLS

More complex requirements often have to be described
by more objectives and attributes. It is common that those
attributes originating from complex objectives have to be
assessed manually by a human. For instance, a requirement
that demands the establishment and the maintenance of certain
policies and procedures inside an organization might have one
attribute per policy or procedure. A human auditor then deter-
mines if a certain policy or a procedure is rightfully established
and maintained and by that, the attribute gets assessed. Our
research has revealed that as of today we’re able to asses just
about a firth of the CCM completely automatically.

IV. IMPLEMENTATION

A. Collection and Measurement Phase with an Audit API

The collection phase is the first step of the execution phase
of an ongoing continuous auditing process. It facilitates the
collection of data for the automated assessment as well as for
the non-automated assessment. Collection of data is driven
by the metric that has been chosen to provide input about
an attribute. In the context of continuous auditing, data is
referred to as evidence. Depending on the type of assessment
the tools used could be various. Automated assessment is
mostly driven by monitoring tools like log analytics, network
statistics, and monitoring, process statistics or resource uti-
lization. While non-automated assessment requires humans to
verify the existence and the effectiveness of certain processes
and to read documents or examine records. In both cases, the
frequency at which the evidence is collected is influenced by
the objective and ultimately by the certification target. The
evidence collected in this phase can originate from various
sources and therefore are in formats or representations which
make proper processing difficult, for instance, due to the
unadjusted scale of two values or a log message that needs
further processing.

The measurement phase describes the process that trans-
forms the collected raw data into a usable measurement result.

In the context of continuous auditing, a measurement result
quantifies or qualifies an attribute. Attributes require the mea-
surement result to be in a particular format or representation.
This way of conducting the measurement and interpreting the
raw data is usually defined in a metric. The measurement phase
is about the actual execution of the operations that qualify or
quantify an attribute. The result can be considered an evidence
like the raw data itself.

We have defined an Audit API that normalizes all those
different sources of evidence and gives the auditing entity the
information needed for the assessment. As security efforts are
mainly driven by securing the assets the Audit API is also
asset-driven. Security implementations are driven by factors
like chosen technologies, requirements and others. This means
that there is no archetype for a secure implementation. The
common element among most services is a multi-layered
architecture, i.e. a web application running on top of a platform
which then runs on top of an infrastructure. The Audit API
addresses this by allowing multiple scopes for one service,
referring to a single layer in the overall architecture. In the
encryption example, this means that evidence on encryption is
provided for the infrastructure level as well as the application
level. The specification of the Audit API was made available
as open source within the EU-SEC project3. It is reflecting a
starting point for discussion and we welcome contributions to
the specification from other researchers.

B. Evaluation and Certification Phase

In the evaluation phase, the compliance status with the
certification goal is determined by evaluating the controls.
Technically a control is a set of objectives which are described
as compilations of attributes, which then, in turn, are evaluated
by a measurement. In our case, evidences are retrieved via the
Audit API and delivered to the auditing entity.

In our reference implementation, we have extended the
Clouditor4 tool to accept and process evidences in the format
of our defined Audit API. Additionally, to test the imple-
mentation of Clouditor against a realistic service, we had
two different cloud services. First, we launched a Cloud-
based document sharing service on Amazon Web Services
(AWS), based on a customized version of Nextcloud5. The
second Service we used is Fabasoft Cloud6 from Fabasoft.
We implemented the service-provider specific part of the Audit
API for both services.

Following a discussion with experts of a highly-regulated
domain, the banking sector, we identified ten high-level se-
curity requirements, a financial institution might have on a
document sharing service and mapped those to CCM controls.
Each control was then broken down into SQO and SLO
attributes. For each defined attribute, the evidence is retrieved
and evaluated. This evaluation leads to the assessment of an

3https://github.com/eu-sec/continuous-auditing-api-spec
4https://www.aisec.fraunhofer.de/de/fields-of-expertise/projekte/Clouditor.

html
5https://github.com/nextcloud
6https://www.fabasoft.com/en/products/fabasoft-cloud



objective is fulfilled or not and therefore if a requirement is
full filled or not.

For the encryption example, the assessment follows this
scheme:

• Clouditor requests all scopes of the service via the API
call /scopes/

• For each identified scope, the tool requests needed evi-
dence for each object using the /{scope}/objects/
end-point.

• For each objectId on each scope the en-
cryption information is gathered by the API call
/{scope}/persistence/{objectId}
/encryption.

It is the duty of the provider-specific implementation of
the Audit API to retrieve the actual evidence from suitable
sources within the service itself, such as log files or by issuing
calls to the AWS infrastructure, whereas it is the duty of the
auditing tool, such as Clouditor to evaluate the evidence in
respect to the required attributes. In our AWS based example,
we parse the log of nextloud to retrieve information like the
encryption parameters of each shared file or when particular
users had access to the application. Information like password
requirements, if two-factor authentication is activated or where
the files are located on a hard drive is retrieved by reading log
files or querying the application database.

The comprehensive assessment of all evidences results in a
compliance status. This status is communicated to a certifica-
tion authority. Based on this compliance status a certification
is issued, suspended or revoked.

V. CONCLUSION AND FUTURE WORK

Up until now, a major part of audit assessments has to be
done with human intervention, but this might change in the
future. We have provided a solution that helps to reduce the
problem of high implementation efforts for continuous audit-
ing by defining a clear and simple API used in the auditing
process. Rather than implementing the full mechanism that
is performing the assessment, the service provider only has
to define the objectives and implement its specific part of the
interface. This approach works regardless of the underlying IT
infrastructure since all possible layers of the cloud stack are
addressed in the evidence gathering as well as the assessment.

We have extended the security auditing tool Clouditor with
an adapter to process evidence generated by this Audit API and
implemented the service-provider specific parts in a Cloud-
based document sharing solution based on Nextcloud and the
Fabasoft Cloud. This solution serves as part of a real-world
scenario pilot in the financial sector of the EU-SEC project and
we expect to share further results of the pilot in mid-2019.

For future work, there are multiple possible ways how
technical improvements can improve on the control breakdown
process, such as advancement in natural language processing
or a machine readable security controls catalog which contains
machine-readable objectives and even attributes. Furthermore,
the current Audit API specification is just a starting point for
further contributions.

ACKNOWLEDGEMENT

This work was partly funded by the European Unions
Horizon 2020 project EU-SEC, Grant No. 731845.

REFERENCES

[1] Anisetti, M., Ardagna, C., Gaudenzi, F., Damiani, E.: A certification
framework for cloud-based services. In: Proceedings of the 31st Annual
Symposium on Applied Computing (SAC). pp. 440–447. ACM (2016)

[2] Anisetti, M., Ardagna, C.A., Damiani, E., Gaudenzi, F., Veca, R.: Toward
Security and Performance Certification of OpenStack. In: 8th International
Conference on Cloud Computing (CLOUD). IEEE (2015)

[3] Cimato, S., Damiani, E., Zavatarelli, F., Menicocci, R.: Towards the
certification of cloud services. In: 9th World Congress on Services
(SERVICES). pp. 92–97. IEEE (2013)

[4] Cloud Security Alliance (CSA): Cloud Controls Matrix v3.0.1
(11-12-18 Update). https://cloudsecurityalliance.org/artifacts/
csa-ccm-v-3-0-1-11-12-2018-FINAL/ (2018)

[5] Humphreys, E.: Implementing the ISO/IEC 27001 Information Security
Management System Standard. Artech House, Inc., Norwood, MA, USA,
1st edn. (2007)

[6] Kunz, I., Stephanow, P.: A process model to support continu-
ous certification of cloud services. In: 31st IEEE International
Conference on Advanced Information Networking and Applications,
AINA 2017, Taipei, Taiwan, March 27-29, 2017. pp. 986–993
(2017). https://doi.org/10.1109/AINA.2017.106, https://doi.org/10.1109/
AINA.2017.106

[7] Lins, S., Schneider, S., Sunyaev, A.: Trust is good, control is better:
Creating secure clouds by continuous auditing. IEEE Trans. Cloud Com-
puting 6(3), 890–903 (2018). https://doi.org/10.1109/TCC.2016.2522411,
https://doi.org/10.1109/TCC.2016.2522411

[8] Stephanow, P., Khajehmoogahi, K.: Towards continuous security
certification of software-as-a-service applications using web ap-
plication testing techniques. In: 31st IEEE International Con-
ference on Advanced Information Networking and Applications,
AINA 2017, Taipei, Taiwan, March 27-29, 2017. pp. 931–938
(2017). https://doi.org/10.1109/AINA.2017.107, https://doi.org/10.1109/
AINA.2017.107

[9] Stephanow, P., Moein, M., Banse, C.: Continuous location
validation of cloud service components. In: IEEE International
Conference on Cloud Computing Technology and Science,
CloudCom 2017, Hong Kong, December 11-14, 2017. pp.
255–262 (2017). https://doi.org/10.1109/CloudCom.2017.29,
https://doi.org/10.1109/CloudCom.2017.29


