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EXECUTIVE SUMMARY

This deliverable developsand implements a unified way to configure test -based measurement
techniques, the crucial part necessaryto implement continuous security audits. To that end, a
domain specific language (DSL) calledConTestis developed which allows to rigorously define
continuous test-based measurements, that is, what is measured and how. While ConTest is
agnostic to specific implementations of test -based measurement techniques, it also serves as
a starting point from which specific configurations of a measurement technique can be
automatically generated. That way, ConTest ensures that the configuration of a testbased
measurement technique producing some measurement results adheres to the domain
concepts defined for continuous test -based measurement.

In order to develop ConTest, the building blocks of continuous test-based measurements are
described. These building blocks serve as the basis to identify and scope the required domain
constructs to design ConTest.lIt is outlined how Clouditor, one exemplary tool to implement

test-based measurement techniques, applies these building blocks to implement exemplary
continuous test scenarios. After having analysed the building blocks, ConTest is formally
defined using the Extended-BackusNaur Form (EBNF) which isa notation used to define

context-free grammars.

ConTest is implemented using the language development tool XText It is shown how ConTest
can be used as a starting point to generate exemplary configurations for specific
implementation of test -based measurement techniques provided by Clouditor.
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The information and views set out in this publication are those of the author(s) and do not
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for the use which may be made of the information contained therein.
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ABBREVIATIONS

API

AST

AWS RDS

CCM

CSA

CSS

CT

DSL

EBNF

EMF

EUSEC

GPL

HTML

HTTPS

laaS

ICMP

JSON

LDAP

MPS

(ON)

OWASP

PaaS

Application Programming Interface
Abstract Syntax Tree

Amazon Web Service Rational Database Service
Cloud Control Matrix

Cloud Security Alliance

Cascading Style Sheets (CSS)
continuous test

Domain-specific language

Extented BackusNaur Form

Eclipse Modeling Framework

European Security Certification Framework
General Purpose Language

Hypertext Markup Language

HTTP Secure
Infrastructure-as-a-Service

Internet Control Message Protocol
JavaScript Object Notation

Lightweight Directory Access Protocol
Meta Programming System

Operating System

Open Web Application Security Project,

Platform-as-a-Service
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SaaS
SLO
SQL
SQLI
SQO
SSH
TC
TCP
TLS
TP
TS
URL
VM

XML
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Software-as-a-Service
Service level objective
Structured Query Language
SQLinjection

Service qualitative objective
Secure Shell

test case

Transmission Control Protocol
Transport Layer Security
testing precondition

test suite

Uniform Resource Locator
Virtual Machine

Extensible Markup Language

D3.2 Architecture and Tools for Auditing, Viec 2017 Page5 of 56



G EUSEC

EU SECURITY CERTIFICATION

EUproject 7318453 European Certification Framework ESEC

TABLE OF CONTENTS

EXECULIVE SUMIMAIY.....ouiiiii e eieeeeitie et e e e et e e e e e e e amr e e e e e e e e e aaaa s e e eeeeeesssnmeeeeennes 2
D1l =1 = T 3
Y o] o] =2V = 11 o] ST USPPPPPIN 4
TabIe Of CONTENTS. ...t e e e e e e eane e e e e eeeeanes 6
N 1 1 (oo [T i [o) o P TSRRRPPRP 9
S oo o - IK= 10 To o] o TT=Td 11 7= TSP 10
1.1.1 Motivation and problem statement..............ooooii i 10
1.1.2  Approach and SCOPE.......ccoooiiiiiii e e e e e e e e e e e e e e e aaaaeeas 12

1.2 Workpackage dependiEnCES...........cuuuiiiiiiieeiiiiiei et e 14
1.3  Organisation of this deliverable...............oooiiiiii s 15

FZ = 7= T 2o | £0] 1T PP 17
% R 1 I = o To [T T=T=T ¢ o Vo 17
2.2 FOrMal LANQUAGES . .....coouiiiiii i e e eeiieettiee e e ettt s e e e e e e e e ettt me e s s e sttt e seeeaaeeeesssnnnmrennnes 18
221 Chomsky hI€raChy........ceeeeiiiiiiiiii e 19
2.2.2  Extended BacKUEaUr FOM.........cuuuiiiieiiiiiiiiiie e ssieeee e e e e e e e s s senraeeeee e e 20

3 Decision to design a universal test configuration language.............ccccccccceeviennns 22
3.1 Testbased measurement technique configuration templates (task 3.1)................... 22
3.2 test-based measurerant technique configuration evidence (Task 3.3)............ccc....... 23

4 continuous testbased MEASUMEMENTS. .........uur i e e e e e e e e e e e e e e e e e eeeeeeeeeeeannnns 24
4.1  Building Blocks of continuous tegiased measurement techniques..............cccccooe.... 24
4.1.1 L@ YT V=P 24
4.1.2 L2 RO L PRSP 25
O T =21 AU (= PR 27
I 1Y T 4 [ AU PPERPR 28
O T =21 A 011 o OSSO 29
416 (=Tt 0] o T {117} o T PP 30

4.2  Clouditor: An exemplary tool to implement tesbased measurement techniques...... 32
4.3 Exemplary continUOUS tE€St SCENANOS.......ceiiiiiiiiiiie e e e e e e 34
4.3.1  Continuously testing secure communication CONfaion .................ccccceecunennnennns 34
4.3.2  Continuously testing input validatian..............cc..uuuiiiiiiiiiiiee e 35
4.3.3  Continwusly testing secure interface configuration.....................oe oo, 37

5 Design of a universal configuration [aNQUAGE..............ceevviiiiiiiimiiiiieeeeee e 39

D 3.2 Architecture & Tools for Auditing, VDec
2017 Page6 of 56



EUproject 7318453 European Certification Framework ESEC

5.1 Identification and scoping of required language CONStrUCES...........ccoovvvvivviiiceenvnnnnn. 39
5.1.1 BT o= LT TP PO PPPPPPPP 39
B5.1.2 TSt SUITR . .euiiiiie ettt ettt e e e s s e e e e e a e e nnnrn e 40
B5.1.3  WOTKIIOW. ...ttt e e e enneeee 41
oI I o 1T (o PPRPT P 41
515 (Tt o] g o {117} o T PP 41

5.2  Formal definition Of CONTESL......cciiiiiiii e e e e e 42

6 IMPIEMENTALION. .. ..o 46

6.1  Grammar specification With XIEXL.........ccooiiiiiiiiiii e e eer e e e e 46

6.2 Implementation of CONtESt With XIEXL.........iiiiiiiiiiec e e 48

6.3  Code generator for CIOUITAL.............uiiiii i e 50

A o ] T [ £ Lo o 1 PP 53
8 REEIENCES.....coiiiiii i ee e e et e e e e e e e e e e e e e e eaaaaa 55

D3.2 Architecture and Tools for Auditing, Viec 2017 Page7 of 56



G EUSEC

EU SECURITY CERTIFICATION

EUproject 7318453 European Certification Framework ESEC

List of Figures

FIGURE 1: CONTINUOBISECURITY AUDITS . ..oveveeeeeeeeeeeteseeeseeseseeseseeseeseessesseseessessesseenes 11..
FIGURE 2: DEPENDENES OF TASK 3.2 WITNIWORKING PACKAGE.3.......eveeveeeeseerneene. 15
FIGURE 3: OVERVIEWFOBUILDING BLOCKS QESTITUTING CONTINUOS TESTBASED
MEASUREMENTS ... oeeeeteeeeeeeee e ee s ee e s s e e ee e eeee e esees e ee e seeesenees 25
FIGURE 4: EXTRACT @R EXEMPLARY CONTIMOUS TEST USING SPRCIZED TEST SUITES
TO TEST PRECONDITIGNBEFORE EXECUTINGANI TEST SUITES.....ovveveeeerereenn 31
FIGURE 5: EXTRACT O¥N EXEMPLARY CONTIMOUS TEST USING PREEDITION TEST
CASES AS PART OF THVRAIN TEST SUITES.......ivoeeieeeeeeeeeeeesseeeeeeeeseeeeesseeesssse 32
FIGLRE 6: COMPONENTS OFHE CLOUDITOR TOOLBO.........iveiveeeeeeeeneeeseeseeeseeeeeeeeseen, 33
FIGURE 7: OVERVIEWFOCLOUDITOR ENGINE MN COMPONENTS (WITHEXTERNAL TEST
TOOL) ettt ettt es et ee et s ee et e e ee et ettt ettt r e 34..
FIGURE 8: CONTEXAREE GRAMMAR OF CONTESUSING EXTENDED BATUSNAUR FORM
(2211 =) OO 44..
FIGURE 9: EXEMPLARFZONTINUOUS TEST COMBURATION OF PORTCOREST USING
CONTEST ettt ee ettt ee e et ee s et es e ee e e s 45
FIGURE 10: XTEXT GRIMAR DEFINITION TO GNERATE CONTEST c..veveeeeeeeeesrsreeeen. 49
FIGURE 11: EXEMPLARYONTINUOUS TEST COMGURATION OF PORTQOEST USING
CONTEST BUILD WITHDEXT GRAMMAR........cveeereeeeeeeeseeeeseeeeeeeee e ee s, 51
FIGURE 12: COMPILE BTHOD OF XTEXT CODGENERATOR TO TRANSIE CONTEST TO
YAML (USED TO CONFIERE CLOUDITORENGING .....voeveeveeeeereeseeereeressssesseeseesennes 52..
FIGURE 13: YAML FILEENERATED FROM COEST TO CONFIGURE PORONTEST WITH
CLOUDITORENGINE ...ttt e eeee e et e e s seeseeseeseeses s s eeseeseesees e eeeene 52..

D 3.2 Architecture & Tools for Auditing, VDec
2017 Page8 of 56



G EUSEC

EU SEGURITY GERTIFICATION

EUproject 7318453 European Certification Framework ESEC

1 INTRODUCTION

While development of standards for cloud services and certification schemes is well under way
(e.g. BSI C5(1), CSA STAR?2)), suitable techniques supporting continuous, i.e. repeated and
automated certification of cloud services is subject to ongoing research and development. Such
techniques are required becausewhen applying traditional certification to cloud services, the
following discrepancy surfaces (e.g. Khan and Malluhi(3), Ko et al.(4), Sunyaev andSchneider
(5)and Cimato et al. (6)): Conducting a certification process is a discrete task, that is, the process
produces a certificate at some point in time and this certificate is then considered valid for
some time, usually in the range from one to three years (7). Put differently: Traditional
certification assumes that during the period where a certificate is valid, any other security audit
of the cloud service will produce identical results (8). However, a cloud service may change over
time where the changes are hard to predict or detect by a cloud service customer (9). These
changes may lead to the cloud service not fulfilingone or more certi ficateds
thus rendering the certificate invalid. Therefore, the assumption of stability underlying
traditional certification does not hold in context of cloud services. Cloud service certification
thus requires a different approach which uses continuous security auditsto detect ongoing
changes of a cloud servie during operation and assesses their impact on satisfaction of
certi fi c adbjecivés(1O0)q1d)X r o |

Continuous security audits are based on a chain of techniques which allowto automatically
and repeatedly produce and reason about evidence Evidence delineates observable
information which serves as basic elementsto check whether a cloud service possesses some
set of properties and thus complies with one or more control objectives defined by a
certification schema.

Naturally, continuous security audis are not to be understood in a strict mathematical sense:
No matter how sophisticated the techniques to produce and reason about evidence, producing

evidence will always bed in a strict mathematical sense d a discrete task that occurs at some
point time. The term continuous security audit is used to describe automated and repeated
production of and reasoning about evidence instances which isconducted by a third party and
which occurs multiple orders of magnitude more frequent ly when compared to traditional

certification (e.g. checking security attribute satisfaction every minutes instead of every year).

D3.2 Architecture and Tools for Auditing, Viec 2017 Page9 of 56
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1.1 SCOPE AND OBJECTIVE

Certification aims at increasing a customer ds

comparability between different cloud services. Thus when leveraging the concept of
continuous security audits to automatically and repeatedly produce and reason about
evidence, it is vitalto unambiguously describe how evidencés producedand processedecause
those results are used to decide if one or more control objectives are satisfiedat a certain point
in time.

1.1.1 MOTIVATION AND PROBEM STATEMENT

Before describing the problem of unambiguous evidence production in detall, it is necessary
to recall and concretize the underlying concepts how evidence is produced and processed
which have been introduced in Section 3 of Deliverable 2.2. Figure 1 provides an overview of
the different concepts when implemented by a concrete chain of techniques support
continuous security audits: Evidence production techniqueprovide, e.g. by using tests, some
formof evidence e. g. supported TLS cipher suites
Instance of evidence are then processed by ametric, i.e. a function which takes as input
evidence and outputs measurement results (Step 2). A measurement technique therefore
consists of at least one evidence production technique and one metric. In context of the TLS
cipher suite example, a concrete metric may inspect the list of supported cipher suites and
check whether it only contains those of a predefined whitelist which are considered secure A
result produced by that metric either indicates that all supported cipher suites are secure
(isSecur@ or are not secure (sNotSecurg. Measurementresults of this exemplary metric thus
follow the nominal scale. After having been produced, measurement results are forwarded to
control objective evaluation. Satisfaction of a control objective, again, can be understood as a
function which takes a measurement result as input and outputs a claim, that is, a result
indicating whether a control objective holds. Recall that in the TLS cipher suite example,
measurement reaults follow the nominal scale. Thus, by definition, the control objective which
is evaluated using these measurement results has to be derived from a Service Qualdtive
Objective (i.e.,a SQO).

Pagel10of 56 D3. 2 Continuous Security
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Figure 1: Continuous security audits

Given the terminology of the previous paragraph, the goal of this deliverable can be

summarized as follows: An approach is needed to represent the semantics of measurement

t e ¢ h n icapfigeratién in an unambiguous and comparable manner.

Consider, for example, the control RB02 Capacity management & monitoring of the Cloud

Computing Compliance Controls Catalogue (1) issued by The German Federal Office for
Information Security (BSI). This control states that

"Technical and organisational safeguards for the monitoring and provisioning and de

provisioning of cloud services are defined. Thus, the cloud provider ensures that resources

are provided and/or servicesare rendered according to the contractual agreements and

that compliance with the service level agreements is ensured.".

Lets further assume that the availability of two SaaS applicationsis compared where both SaaS

providers have defined the identical SLA regarding availability (e.g. 99.999%6 per year) and

both providers claim to fulfil control RB -02 of BSI C5.In order to check whether their claims

are true, one continuous audit strategy may consist of continuously testing both applications

to detect potential outages, i.e. periods where the service is unavailable. Yet themeasurement

technique usedfor e a c h

application

di

ffer:

One

simply pinging its endpoint every minute, i.e. measures the time delta between sending ICMP

Echo Requestto a publicly reachable host and receiving ICMP Time Reply packets.These

measured round trip times serve as instance of evidence which are d in order to compute a

metric d then compared with expected ones to dete rmine the outcome of the test, i.e. whether

the SaaS application is available or not The other application is tested by issuing specially

crafted calls to its RESTful APl every 30 seconds and comparing the returned JSON obje¢t.e.,

the evidence) with the predefined, expected object to compute a measurement results

indicating if the returned JSON is correct or not (i.e., the metric). It is obvious that two different

measurement techniques produce measurement resultsthat differ in semantics. These results

are used to support evaluation whether the respective SaaS application complies with the

above control objective. As a consequence, the conclusions drawn based on the differing

D3.2 Architecture and Tools for Auditing, Viec 2017
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measurement results produced for the two exemplary SaaS applications cannot bedirectly
compared.

The above exampleillustrates that unambiguous configuration of measurementtechniquesis
needed to provide for comparability of measurement results generated as part of the
continuous security audit. Furthermore, unambiguous definition s of how to collect and reason
about evidence can also be leveraged to guide the design of future measurement techniques
aiming to continuously produce evidence and compute measurement results. This can be
understood as one central step of standardizing how to define the meaning of measurement
results produced as part of continuous security audits. Thus it becomes possible to ensure that
measurement results produced by some measurement techniques developed at some point in

the future also follow the same rigorous definition of measurement techniques semantics.

Note that t he above paragraph impliesthatme asur ement technishavete 8 conf
be complete, that is, contain all information required to configure specific measurement

technique. At the same time, these configurations have to be general representations of
measurementswhich are agnostic to specific implementations of measurement technique.

1.1.2 APPROACHAND SCOPE

One approach to unified, rigorous representation of configurations of measurement
techniques consists of the development of a domain-specific language (DSL) whichis based
on the notion of formal languagesdrawing on precise mathematical definitions (12). While this
DSL has to be agnostic to implementation of measurement techniques and thus provides a
way to define measurement result production in general, it has to also serve as a starting point
from which specific configurations of a measurement technique can be automatically
generated. The latter ensures hat the configuration of a measurement technique deployed to
produce some measurement results adheres to the domain concepts of continuous security
audits.

In order to develop such a language, first, common domain constructs which are needed to
configure measurement techniques which are part of continuous security audit tools have to
be identified. Thereupon, the language can be designed using a suitable formal grammar.
Furthermore, to support configuration of specific measurement techniques, tool-specific code
generators have to be developed which compile the target configuration language.

Ideally, the DSL should be developed in a way such that it can be used to configure any
measurement technique which continuously produces evidence. In practice, however, this

Pagel2of 56 D3. 2 Continuous Security |
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requirement is hard to satisfy. The main reason for this is that measurement techniques
supporting cloud service certification @ and corresponding tool support & are subject to
ongoing research and development where only a few prototypes are available as of writing this
document. Furthermore, there are two fundamentally different approaches to continuous

evidence production (6):

1 Monitoring -based evidence producti on: Thesetechniques use monitoring data as
evidence which is produced during productiv e operation of a cloud-service (13). Two
major types of monitoring -based evidenceprodcution technigues can be distinguished:
the first group consists of methods proposed by current research (e.g., Krotsiani et al.
(20), Schiffmann et al. (14) which are specifically crafted to produce evidence to check
whether particular properties of a cloud service are satisfied, e.g. integrty of cloud
service components (14) and correctness of non-repudiation protocols u sed by cloud
services (10)). Those methods require the implementation of additional monitoring
services which are not needed for operational monitoring of the cloud service; the
second group of monitoring -based evidence production techniques consists of existing
monitoring services and tools which are used to operate the infrastructure of a cloud
service, e.g. Nagios or Ganglia’. The data produced by these monitoring tools can also
be used as evidence to check a cloud service's poperties such as availability (13). Also
data produced by tools which aims to detect intrusions such as Snort*, Bro*, or OSSE€
can serve as evidencg13) (15).

I Test-based evidence production : Similar to monitoring -based techniques, test-based
evidence production also collects evidence while a cloudservice is productively
operating. Different to monitoring -based technigues, however, test based techniques
do not passively monitor operations of a cloud service but actively interact with it
through tests. Thus test-based methods produce evidence by controlling some input
to the cloud service, usually during product
RESTful AP(6) (16; 17).

It is reasonable to assumethat configuring monitoring services underlying monitoring -based
evidence production techniques and continuous test-based evidence production techniques
will differ substantially. The work described in this document focuses on test-based

measurement techniques, that is, measurement techniques which use testbased evidence

! https://www.nagios.org/

2 http://ganglia.sourceforge.net/
3 https://www.snort.org/

4 https://lwww.bro.org/

5 https://ossec.github.io/

D3.2 Architecture and Tools for Auditing, Viec 2017 Pagel3of 56



EU project 731845 European Certification FramewokU SEC s EUSEC

EU SECURITY CERTIFIGATION

production techniques to continuously produce evidence. Note that parts of the contents of
this deliverable have been developed in (17).

1.2 WORKPACKAGE DEPENIIES

The unified configuration langu age introduced in this document has dependencies with Task
3.1 and 3.3as shown inFigure 2. Consider Task 3.1 which defines data structures used to store
instances of control objectives. Here, the unified configuration language allows to define
candidate configurations, that is, templates for configurations of test-based measurement
techniques and map them to corresponding control objectives to be continuously audited.
Therefore, the output of th is tasks serves as input to hsk 3.1. In turn, fields of the control
objective's data structure have to be available where to store the test-based measurement
technique's configuration. That way, Task 3.2 also depends on input from Task 3.1.

Furthermore, the unified configuration language serves as input to Task 3.3 which defines a
common data structure to represent evidence, i.e. instances of evidence produced by (test
based) measurement techniques. Unified configurations of test-based measurement
techniques used to produce such evidence have to become part of the data structure of an
evidence instance. Put differently: An instance of evidence has to contain the configuration of
a test-based measurement technique which has been used to produce it. That way,Task 3.2
serves as input to Task 3.3.

Pagel4of 56 D3. 2 Continuous Security |
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Figure 2: Dependencies of Task 3.2 within Working Package 3

1.3 ORGANISATION OF THIXELIVERABLE

The remainder of this document is organized as follows: The next section outlines concepts
which are needed in order to develop and define domain -specific languages. Thereafter, the
DSL engineering process described by Mernik et al.(17) is followed (an outline of this process
is described in Section 2.1): First, the decision to develop a DSL is explained, especially
considering its contribution to Task 3.1 and Task 3.3 of Working Package 3. ThereafterSection
4 describes the domain concepts of continuous test-based measurements (as part of
continuous security audits), presents an exemplary implementation of these concepts whichis
called Clouditor as well as outlines three exemplary continuous test scenarios Drawing on the
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elicited domain concepts, Section 5 then identifies and scopes constructs which are required
by a universal configuration language and, on this basis,describes the formal definition of the

DSL using contextfree grammars. Using this formal definition, Section 6 describes the
implementation of the DSL using the language development tool XTexf and shows how to use
code generators to translate from the DSL to a target language, i.e. the configuration language
of a specific measurement technique. Finally, Section7 concludes this deliverable.

6 https://eclipse.org/Xtext/
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2 BACKGROUND

This section introduces basic concepts which are needed in order to develop and define

domain-specific languages. The next section outlines necessary steps to develop a domain

specific language which the remainder of this document will follow. T hereafter, the core

concepts of formal languages are described while the focus lies on contextfree grammars and

their representation using Backus-Naur-Form (BNF) which is itself a domain specific language.

2.1 DSL ENGINEERING

There are multiple steps involved when developing a domain-specific language. In this section

we describe a process which was proposed byMernik et al. (17) detailing all steps involved in

DSL engineering. This process includeshe steps decision analysis designand implementation

of a DSL which are described hereafter

T

T

Decisiont When developing a new DSL or identifying an existing DSL to reuse, the
first step consists of properly motivating the usage of DSL because it initially incurs
additional (often sig nificant) effort. Such motivating can be driven by factors such as
cost saving, e.g. a DSL helps eliminating repetitive and thus timeconsuming tasks,
or by correctness, e.g. facilitate the correct configuration of an application.

Analysis This step idertifies, scopesand describes the domain for which the DSL is
to be developed. To that end, different sources can serve as input to this analysis,
including, for example, inspection of existing GPL code, technical documentation,
and interview with domain experts. The necessary outcome of conducting this step
is a description of the domain -specific terminology and semantics.

Design The design of a DSL can follow two main approaches: The first draws on an
existing language where either some features of the existing language are reused
(piggyback), restrict the existing language (specialization) or extend the existing
language (extension). The second approach does not build on an existing language
but aims at designing a DSL from scratch

Once it has beendecided whether to invent a new language or to build on an
existing one, the next step consists of defining the language either formally or
informally (or both). Informal definition of DSL refers to using natural language to
delineate the features of the DSL to be developed. Yet this approach is unsuited if
the goal is to build a DSL that can actually be consumed by an application.

D3.2 Architecture and Tools for Auditing, Viec 2017 Pagel7of 56
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Therefore, we need to formally describe the syntax of the DSL which can be
achieved using, e.g., EBNF as we will describe in $&on 2.2.

1 Implementation: Once a DSL has been formally defined, the language can be
implemented. According to Mernik et al. (17), some exemplary choices include:

(0]

Compilerswhich translate the DSL constructs to constructs of an existing
language and library calls (also known asapplication generators),
interpreters which recognize DSL constructs and interpret them,
embeddingwhere DSL constructs, i.e. data types and operators are defined
using constructs of an existing GPL, or

compiler or Interpreter extensionswhere the compiler or interpreter of an
existing GPL is extended with code generation required for the DSL.

Note that the implementation type embeddingis also referred to asinternal DSL
In this context, an external DSL is represented in a language different to main
programming | anguage it is interacting with (18).

Implementing a DSL using a custom compiler or interpreter has many
advantages, e.g., the syntax can be close to notations used by domain experts.
However, it bears disadvantages such as having to implementcustom, possibly
complex language processors. Yet these disadvantages catbe limited or
eliminated if language development tools are used which automate most of the
language processor construction (17). Examples for such tools are XTextSpoofax’
or MPS’,

After having outlined the main steps of the DSL engineering process, thefollowing section

introduces the necessary concepts of formal languages which are required to formally define

the syntax of a DSL.

2.2 FORMAL LANGUAGES

A formal language L is defined by an alphabet x and a grammar G. The alphabet x is a set

whose elements are called symbols A finite sequence of symbols from x are called word. The

grammar G specifies which sequences of symbols are weliformed, that is, which word belongs

to the language L.

A grammar G is defined by the 4-tuple (N,T,RS where

1 N is the set of nonterminals, i.e. variables thd represent language constructs,

7 https://www.metaborg.org/
8 https://www.jetbrains.com/mps/
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9 Tis the setof terminals which is identical with the alphabet x of the language L. Note
that the set of nonterminals and terminals must not intersect, i.e. 0 Z"Y 0.

1 Ris the set of productions which follow the form & © i. Both dand i are sequences
of nonterminals and terminals with &containing at least one nonterminal.

1 Sisanonterminal (i.e.,ST N) which constitutes the start variable.

2.2.1 CHOMSKY HIERACHY

Formal grammars can be classified according to the Chomsky hierarchywhich distinguishes
four types of grammars (19):

1 Type0: A grammar G which can be defined using the above 4-tuple is a grammar of
type 0. A language generated by such a grammar is Turing recognizable which means
that a Turing machine exists which accepts all valid words of that language.

1 Typel: This type of grammar generates context-sensitive languages. The
productions of these grammars may have more than one symbol on the left-hand
side, that is, 20 s  phprovided that at least one of these symbol is a nonterminal.
Thus the left-hand side may consist of terminals, i.e. synbols which are not replaced
by the production, thereby establishing a context of the replacement. This is the
reason why these grammars are called contextsensitive.

Yet the size of the word on the left-hand side must not exceed the size of the word
on the right-hand side of a production, that is, for all  s© 2 § the condition
2 s O shas to be satisfied. Furthermore, productions of the form SO - are not
permitted, except for Sbeing the start symbol and not occurring on the right -hand
side of any production. The latter two conditions implies that the size of a sequence
as generated by a context-sensitive grammar always increases when a production is
applied.

1 Type2:This type of grammar generates context-free languages. Opposed to context-
senstive grammars, the production of these grammars only allow the left -hand side
to be nonterminal while words on the right hand -side may consist of both terminal
and nonterminal symbols. Since no terminals are permitted on the left-hand side of
a production, no context is considered during replacement. Hence, these grammars
are context-free.

1 Type3: This type of grammar generates regular languages. The productions of this
grammar restrict the left -hand side to single nonterminals while the right -hand side
may either consist of a terminal followed by a nonterminal symbol (right regular) or
a nonterminal followed by a terminal symbol (left regular).

D3.2 Architecture and Tools for Auditing, Viec 2017 Pagel9of 56



EU project 731845 European Certification FrameworfkU SEC s EUSEC

EU SECURITY CERTIFIGATION

2.2.2 EXTENDED BACKUSNAURFORM

The BackusNaur Form (BNF) is a techniquewhich supports the definition of define context-
free grammars (20). Thusthe BNF can beunderstood as a domain specific language itself which
was developed with the purpose of easing syntax specification (17). Drawing on the BNF, the
extended Backus-Naur Form (EBNF)(21) has been developed and stardardized in ISO/IEC
14977:1996 Information techn ology - Syntactic metalanguage - Extended BNF(22).

Consider, & an example, the fdlowing context-free grammar G of the language L

OO sQ pdq
9 0 Y
T Y o
7 Y YO OYRYO OO
T oY oy

Deriving the word 0 6 6 6 conors as follows:
"YO YR DRAYRDDHBO D

In order to use BNF to represent the grammar of this exemplary language, first some syntactic
conventions have to be laid out: The symbol "::=" is used for productions instead of '© '. Also,
the symbol '|' is used to represent alternative derivations more efficiently than stating

alternative productions separately. Other variations include enclosing terminals in quotes to

distinguish them from nonterminals which are enclo sed with angle brackets, i.e & Using BNF,
the context-free grammar to generate L can be described as

6‘m e .‘; i’?’ v 5

The EBNF improves efficiency of defining contextfree grammars further. Note that & despite
the standardization effort in ISO/IEC 14977:19960 there is no universally accepted variant of
EBNF.Here, aversion is chosen whose syntax is also heavy used by xText an open source
framework to implement domain specific languages, which will later be used to implement o ur
test definition language (see Section5.2). This EBNF version isalso used to define, e.g.,the
formal grammar of XML (23). The mostimportant extensions to syntactic conventions of BNF

are the following:

1 Nonterminal symbols are not enclosed with angle brackets becauseindicating terminal
by single or double quotes is unambiguous,

1 the '?' operator indicates that the symbol to the left i s optional,

1 the ™ operator defines that the symbol to the left can occur zero or multiple times, and
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9 the '+' operator defines that the symbol to the left occurs one or multiple times.

Using this variant of EBNF, we can éfine the grammar of language L as follows:

Yd OYO
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3 DECISION TO DESIGN ANIVERSALTEST
CONFIGURATIONANGUAGE

As already pointed out in the introduction, the motivation to develop a DSL which defines the
configuration of test-based measurement techniques lies in having an approach at hand to
formally define all required parts of a test-based measurement techniquesin general. This not
only paves the way for comparability of evidence and measurement resultsproduced by these
techniques but also guides the development of future test-based measurement techniques
thus having them conform with a common set of domain concepts defined for continuous
security audits.

Since the DSL is defined by a formal grammar, the guarantee of atest-based measurement
technique conforming with the domain concepts isnot merely informal but is enforced through
code generators:the developer has to provide a code generator which translates the constructs
of the DSL into the target language constructs, that is, the language a specific tool uses to
configure the test-based measurements Put differently: any specific test-based measurement
technique has to be configurable using a configuration written in the DSL. This implies that a
suitable application generator exists which translates the constructs of the DSL into the
language constructs which a particular test-based measurement techniques uses for
configuration.

In context of Task 3.1 and 33 of Working Package 3, the DSLintroduced in this document to

formally define configurations of test-based measurement techniques depicts an essential
contribution to ensure consistent semantics of evidence produced by these tools. The following
sections outline the contribution the DSL makes to Task 3.1 as well as to Task 3.3.

3.1 TESTBASED MEASUREMEN TECHNIQUE
CONFIGURATION TEMPLEAS (TASK 3.1)

Task 3.1 has control management at its heart, e.g. defining data structures usd to store
instances of control objectives to be audited continuously . The unified configuration language
for test-based measurement techniques allows to define candidate configurations, that is,
templates for configurations of test-based measurement techniques and map them to
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corresponding control objectives. Those configuration templates are only partly defined and
are complemented once the target of certification , that is, a cloud service to certify has been
identified within a concrete scenario. For example, consider the exemplary caseof checking the
availability of a cloud service component described in the introduction of this document which
used simple pings: configuring this test requires to, e.g.,define the hostnames of the cloud
service components whose availability should be tested as well as the expected round trip
times. The continuous test template will only include placeholders for these parameters since
they may change from one deployment of the continuous test to another one.

3.2 TESTBASED MEASURENME TECHNIQUE
CONFIGURATIORVIDENCETASK 3.3)

Task 3.3 of Working Package 3 centers around the question how to persist evidence which has
been used to compute measurement results which, in turn, serve © check whether defined
control objectives are satisfied. An integral part of Task 3.3 is therefore to define a common
data structure to represent evidence, i.e. instances of evidence produced by (test-based)
measurement techniques.

As already pointed out above, unified, formal definition of test-based measurement
t e ¢ h ni apnfigusations allows to rigorously compare evidence produced by these

techniques as part of the measurement. Consequently, configurations of test-based

measurement techniques which are used to produce some evidence have to become part of
the data structure of an evidence instance, that is, an instance of evidence has to contain the
configuration of a test-based measurement technique which has been used to produce it.

Drawing on the DSL, the means to represent the configuration of a test-based measurement
technique in a general manner are availablewhich can be included as part of the evidence data
structure.
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4 CONTINUOUS TESBASID MEASUREMENTS

In this section, domain specific constructs are described which are used by testbased
measurement techniques which are part of continuous security audits supporting continuous
security certification of cloud services (see Figure 1). To that end, the next section introduces
the building blocks of continuous test-based measurement techniques. Thereafter, Section4.2
outlines Clouditor which delineates one exemplary implementation of the building blocks.
Finally, Section4.3 presents three exemplary scenarios ofcontinuous, test-based security audits
of cloud service components.

4.1 BUILDING BLOCKS)F CONTINUOUS TESBASD
MEASUREMENT TECHNIERJ

This section introduces the five main building blocks of continuous test-based measurement
techniques. First, an overview of the core concepts are provided, outlining how they can be
used to design a continuous test-based measurement(Section4.1.1). Thereafter,each building
block is explained in detail (Section4.1.26 4.1.6).

4.1.1 OVERVIEW

Continuous test-based measurement techniques use continuous tests to automatically and
repeatedly reason about security properties of cloud services. A continuous test 6 “¥onsists of
five building blocks: Test suites("Y')Ydefine any single test which is executed repeatedly within
a continuous test. When defining a test suite, one or more test casey('Y( are associated with
the suite. A test caseforms the primitive of any continuous test, it specifies the concrete steps

to test a cloud service as well as to evaluate whether a test case passed or failed. Test cases do

not depend on specific test suites and can therefore be reused with any suite if needed. The
result of a test suite - in its simplest form passed or failed - are used in two ways:on the one
hand, test suite results are used to compute test metrics (0 ) which allows to compute
measurement results to evaluate statements over a cloud service's property (i.e., control
objectives), e.g. a detected security vulne@bility of a cloud service was fixed within 24 hours.
On the other hand, test suite results are used by the workflow () to decide which test suite to
execute next. Lastly, we have to test whether the assumptions made about the environment of
a cloud service under test hold which we refer to as testing preconditions "YY).
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Figure 3 shows how the building blocks constitute a continuous test: initially, the workflow
decides which test suite to run first (Step 1). Executing a test suite translates to executing any
test case contained within the suite. The result of the test suite is then supplied to one or more
test metrics (Step 2a). Furthermore, the test suite result is handed over to the workflow (Step
2b) which, based on the result, decides which test suite to execute rext (Step 3). Upon
completion, the results of the test suite are again used to compute test metrics (Step 4a) and
supplied to the workflow (Step 4b) deciding which test suite to execute next and so forth.

Test suite; Test suite;,

Test case, Test case,

<< testsuite >> << test result >> << test suite >> << testresult >> << testsuite >>
- Test case L > Test case A >

2 workflow 2 workflow

workflow

A
Y

Testcase h

l« test result >> l« test result >>

( v ( v

Test case n

> dataflow

Test metric Test metric

< control flow

<<*>> data

Figure 3: Overview of building blocksconstituting continuous testbased measurement

4.1.2 TEST CASES

Test cases are the primitive of any continuous test. Each test case consists girocedureswhich
specify any steps that are executed by the test case. For example, a test case may specify to
establish a SSH connection to a virtual machine (VM), then issue a command to download and
install a package on the machine. In order to execute correctly,a procedure may require input
parameters e.g. successfully connecting to a VM via SSH requiresisername hostname, and
path_to private key fileThe arguments which are passed to a procedure's input parameters
can be selected randomly from a predefined set, e.g. which application to download and install

on the VM is selected randomly from the package list.

Further, each test case has a set oforacles that is, methods which are used to determine
whether the results of a test case indicates failure or siccess. In order for a test case to pass,
all defined oracles have to indicate success. Yet besides simply passing or failing, the result of
a test case also includes start and finishing time of the test case, i.e. time elapsed between
starting a test case run and completing reasoning about the test results. Also, the test case
result can provide further information, for example, the maximum average response time of

TCP packets measured to test latency of the connection to a remote host.
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Lastly, a test casgpossesses arordering number which serves to specify the priority with which

a test case is executed as part of the test suite (seeext section). Consider, for example, a test
suite which has three test cases "YOp, 4 #¢ and "YOQo where "YOp and "Y3¢ have ordering

numbers 1 and 1, and"YQo has ordering number 2. When this test suite is executed, then"Y3p

and "Yd¢ will be executed firstly and concurrently. As soon as both "Ygp and "Y§¢ have
completed execution, execution of "Yda is triggered.

More formally, we can describe a test case"Ydas the 4-tuple which consists of the following
four elements: ProceduresOwhere each procedure QN ‘Orequires a tuple of input parameters
0 &) M B MO 080 is the ordered list which contains any input parameter tuples required
for the defined procedures of a test case YO Furthermore, "YOconsists of a tuple of oracles 0

where each oracle¢ N 0 evaluates if a test case passed or failed, as well as an oreting number
ONa g

"Y§  6OMR) i O

Recall the exemplary test case of connecting to a VM and installing a package: This test case
may contain the three procedures

0 é ¢ & AUDDQE i @) IO O ) @&
where a SSHconnection requires input parameters

Op @i Qi ¢HRA'D ¢ Qa0 &1 QUBO®AQN Q
installing a package using apt-get install requires input parameters
0¢ & 0Oo0d G
and, finally, computing a message authentication code (MAC) of the installed package using
openssl dgst -sha256 -hmac requires input parameters

0.0 0QO®
Furthermore, the test case passes if the MAC of the installed package and a MAC which was
previously computed and stored by t he oracle match:
0 @oé &n @Giod

Finally, the test case executes immediately when the test suite execution is triggered, hat is,

its ordering number is O p. In summary, we can describe the exemplarytrusted package
installation "Y0 6test case as follows:
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TCcTP! =((connect_via_ssh,install_package,compute_mac),
({username, hostname, path_to_private_key file),{package_name),(key)),

(compare_mac),

1).

As mentioned above, arguments passed to an input parameter can be randomized. As an
example, consider the input parametersr A 0O ®QdQaddn "Q'Qwnhere the
package to be installed as well as the key used for computing the MAC can be selected
randomly. We describe a reandom argument with values in was a function 6¢m© wwhere mis
the set of all possible arguments that can be passed to an input parameter ;¥ 0. In our
example,mof 1 contains all valid package nameswhile 6 can evaluate to, e.g.,

awi & DQI

Note that executions of test cases have be independent of each other, that is, whether a test
case is executed or not does not depend on other test cases' results. However, note that
concurrently executing multiple test cases on one service naturally can produce side effects,
i.e. test case results that affect each other.

4.1.3 TEST SUITES

A test suite combines test cases where each suite contains at least one test case. Hereafter, we
refer to the execution of a test suite as test suite run (© i).iOnce the test suite run completes,

it returns failure or success. A test suite either passes or fails, it passes if all contained test cases
pass. Furthermore, upon completion, the test suite run returns the start (0 i )} and end time
(6 i ), as well as the esults of all bound test cases.

A test suite can be executedsuccessivelynultiple times which is defined by iterations, e.g. 100.
Triggering execution of a test suite translates to triggering execution of test cases bound to
the test suite. Test cases with smallest ordering number are executed first and, having returned,
are followed by test cases with next larger ordering number. In order for the following test
suite's iteration to start, the current iteration of a test suite has to be completed, that is, any
test cases bound to the test suite have to be completed. The number of successive iterations
can be set to infinity. In this case, consecutively triggering a test suite's execution will not
terminate until otherwise interrupted, e.g. by a decision made by the workflow (see following
section).

A test suite also defines aninterval which describes the period of time in seconds between
consecutive executions of a test suite. One option to configure the interval is to trigger
execution of a test suite after a fixed interval passed, e.g. 600 seconds after the previous test
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suite execution completed. Alternatively, the interval can serve as a window from which the
start of a test suite's execution is selected randomly. A special case consists of individually fixed
intervals per iteration: Here, each interval prior to execution of a test suite is fixed d and thus
not chosen randomly d but assumes an individual value. For examplea test suite is configured

to run three times successively, i.e. the number of iterations is three, where each waiting interval
before executing the test suite is defined individually, e.g. wait 2 seconds before the first
iteration, 4 before the second iteration and 8 befo re the third iteration.

Lastly, if subsequent iterations of a test suite start instantaneously, then they may produce
unwanted side effects. In order to prevent such correlations, a fixed offset (seconds) can be
defined permitting the service instance under test to clean up after a test suite has completed.

A test suite "Y"¥ described as the 4tuple which consists of the following four elements: Bound

testcasesd i GYOHYS B AY6 Gkthe number of iteration "0 & , the offset"O" &  (seconds)

between test suite executions as well as the interval”YN & (seconds) which specifies either
the fixed or randomized time between cons ecutive test suite iterations:

Y'Y ® iAo

To illustrate the usage of a test suite, recall the trusted package installation test case "Y0
described in the previous section. As an example,lets assume that the execution of "Y0 is
triggered randomly within a time interval of 60 minutes, i.e. 'Y ¢ ¢ mtRFurthermore, the test
suite is consealtively executed for 3000 times, i.e."'O ¢ T 1Tt maving a 15 minute offset
between every execution, that is,"O  w T.1€0nsequently,the exemplary test suite containing
a single test case”Y0 can be described as follows:

Y¥ O @Ys Go i firto @ nOt
4.1.4 WORKFLOW

A workflow defines dependencies between iterations of a test suite and between iterations of
different test suites. To that end, a workflow uses the results of test suites to control the
execution of other test suites. Consider, as a baic example, that after successfully completing
a number of iterations, a test suite fails. A workflow can now define what to do as a reaction to

this failure, e.g. whether to continue running the test suite for the remaining iterations, to start
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another test suite or terminate the test. Therefore, a workflow permits fine-grained control of
the execution flow of a conti nuous test.

Recallthe exemplary test suite "Y'& Swhich contains the test case”Y6 :if "Y' Ofails at the
third iteration, i.e. O o, then the workflow may stop execution of "Y' %and trigger a
different test suite which checks integrity of packages previously installed on the VM to
determine whether their integrity has also been compromised.

A workflow can be described as the function 17 DY © "Y'Ywhich takes as input the results of
executed test suites'Ywhere eachi | 'Yis a 2-tuple of a test suite "Y'y Oand a sequence of test
sui t e 0 s afterere (I ftesation, that is, s  "QFor example, theinput for 1 for test
suite Y'Y Oafter the third iteration isi &Yy Fy i M R@OOE G@ each test
sui t e d sw autpuisuhe test suite "Y' D nto be executed next, for example, to trigger
execution of a different test suite if the current test suite failed for the last five consecutive
iterations.

4.1.5 TEST METRICS

Continuous test-based measurement techniquesaim at automatically and repeatedly produce

measurement results which are usedto check if a cloud service complies with a set of control

objectives over time. Thusit is necessary b interpret a sequence of test results in order to

reason about cloud service properties over a period of time . To that end, suitable metrics are
computed which permit us to evaluate statements over cloud services properties such as the
availability of the cloud service is higher than 99.999% per day.

The computation of ametric @ N 0 can be described as the function® 0 DY © 0 which takes
as input results of test suite runs Y. A metric can be computed based on any information
available from the result of a test suite run, e.g. at what time the test suite run was triggered,
when it finished, and further information contained in the results of test case runs bound to

the test suite run.

Note that singular test (suite) results already denote the most basic type of a test-based
measurement results. This means that only parts of a singular test result can be considered
evidencewhereas the test result already implies that a decision has been madebased on the
i nformation obtained duMoiesgecifitallyeanytirdosnations whelk ecut i o
serves as input to a welldefined test oracle which are part of test cases constitutesevidence
Therefore, the test result itself has to be considered a measurement result since the test oracle
delineates the primitive of a test metric. However, only considering a singular test result does

D3.2 Architecture and Tools for Auditing, Viec 2017 Page29 of 56



EU project 731845 European Certification FrameworfkU SEC s EUSEC

EU SECURITY CERTIFIGATION

not allow to reason about period s of time, hencetest metrics composed of multiple test results
are required.

4.1.6 PRECONDITIONS

Naively executing continuous tests is prone to produce false negative test results, e.g., testing
i f a webserver 0 ssetueSnaycfal not becpuse @& & iulnenable configuration
but because the webserver cannot be reached. Computing test metrics based on false negative
test will lead to erroneous metrics and thus incorrect evaluations of statement over the cloud
services.Therefore, the assumptions made about the environment of the cloud service under
test, i.e. preconditions, need also to be tested.

There aretwo options to model preconditions using the building blocks of continuous tests.
These options are explained in the following two paragraphs.

Precondition as specialized test suites This option treats preconditions as a special type of
test suite: First, test cases are design which aim to check whether preconditions hold. A
specialized test suite is then created whic only bind these precondition test cases. Finally, this
specialized test suite has to be executed prior to the main test suite, i.e. the test suite designed
to reason about a cloud servicebs property.
executes the main test suite if all preconditions have passed. Therefore, preconditions can be
used to control the workflow of a continuous test, allowing to adapt, i.e. select and execute

test suite according to environmental conditions discovered at runtime.

Figure 4 shows an extract of an exemplary continuous test that use specialized test suites to
test preconditions before executing the main test suite: after having successfully tesed the
preconditions (Step 1), the workflow triggers execution of the main test suite (Step 2). After
having executed the main test suite, the test result is used to compute test metrics (Step 3a)
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and supplied to the workflow (Step 3b) which triggers execution of specialized test suite to
again validate the preconditions (Step 4) and so forth.

N B
Specialized
test suite

[ Precondition

Specialized
testsuite

Main
test suite

in
test case, test case,

Precondition << test result >>

<< testresult>> |workflow

0 ‘O{

<< testsuite >>

workflow | << specialized test suite >> [Pr‘erundvtran}
test case
L 2

Precondition
test casem

<< testresult>> | workflow | << specialized test suite >>
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test case,
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Vles( case,
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testcase,,

-

<< testresult>>

|55/
—> dataflow '
» control flow Test metric
<<'>> data
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Figure 4: Extract of an exemplary continuous test using specializetist suites to test
preconditions before executing main test suites

Consider, as an example, that a continuous test aims to check whether the bandwidth available

to a VM for uploads is at least 50 Mbit per second. To that end, first a connection to the VM

via SSH is established, then a file is uploaded where measuring the duration of that upload.

One exemplary precondition for this test to execute correctly is that the VM is reachable via

SSH. In order to evaluate whether this precondition holds,itis possibletopr obe t he VM6 s
22 by sending a SYN TCP segment and check if the host response with a SYMCK segment.

Only i f the precondition test suite determines
bandwidth test is executed.

Using specialized teg suites to model preconditions has one important drawback: As described
in Section 4.1.3 test suites are executed successively, that is, execution of the next dte is
triggered once the previous suite completed execution. Thus, a test suite containing
preconditions may have passed but during the following main test suite, the preconditions are
not satisfied anymore. Consequently, the main test suite may incorrecty fail, producing an
inaccurate test result

Preconditions as part of main test suites The second option consists of modeling pre -
conditions as test cases and binding them to the main test suites. Figure 5 shows that after the
workflow triggered execution of the test suite (Step 1), these precondition test cases are
executed concurrently with the main test cases. Since a test suite only passes if all contained
test cases pass (see Sectiod.1.3), a failing precondition test case leads to a failing test suite.
In order not to misinterpret a failed test and thus create a false negative test result, a failed test
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Having preconditions as part of main test suite also allows to control the workflow. After havi ng
provided the test suite result to the workflow (Step 2b), the workflow inspects the test suite
results and selects the next test suite to execute accordingly (Step 3). However, concurrently

executing precondition test cases and main test cases comes ata price: regardless of any

precondition test case failing, the remaining precondition test cases as well as the main test

cases of the test suite are still executed, although the result of the test suite will be discarded.

Modelling preconditions as part of main test suites has the advantage thatit allows to enforce

that testing preconditions and the main test suite are executed concurrently. Moreover, note
that the ordering numbers & which are required for definiti on of test cases (see Sectiord.1.2)
0 allow for fine -grained pairing of precondition test cases and main test cases within the test

suite.
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Figure5: Extract of an exemplary continuous test using precondition test cases as part of the main

test suites

4.2 CLOUDITOR: AN EXEMARY TOOL TO IMPLEMEN
TESTBASEIMEASUREMENT TECIKHNVES

This section first outlines the Clouditor-engine which is part of the Clouditor toolbox and whose

design follows the building blocks described in the previous section. The Clouditor toolbox is

part of the background of the EU-SECproject, it consists of five main components d Engine,
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Explorer, Simuhtor, Evaluator & Dashboard & which are shown in Figure 6°. The engine is
responsible for executing test-based measurementtechniques. To that end, it implements and
deploys continuous tests following the building blocks described in the previous section.

' ™
Clouditor
Dashboard
Clouditor Clouditor
Engine Simulator .
i /i
Clouditor Clouditor
: Explorer Evaluator ;
P— ! P—

' continuous : i performance
t_...\validation i....evaluation
Clouditor Toolbox
. A

Figure 6: Components of the Clouditor toolbox

Figure7s hows a high | evel architecture of the
and control flow. Test caseare implemented using hooks to existing security tools such as
Nmap®®, SQLMag*, sslyze? etc, there reusing existing knowledge and tooling. Alternatively,

test cases can be implemented natively and sel-contained as part of the Engine.

9 For further information about the Clouditor toolbox see h ttps://www.aisec.fraunhofer.de/deffields -of-
expertise/projekte/Clouditor.html.

10 https://nmap.org/

11 http://sqlmap.org/

12 https://github.com/nabla -c0d3/sslyze
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TestSuite

<< testresult >>
TestCase

A

Clouditor Engine

\ H J
call << test result >>
Y

[ Test Tool J
i A
i test <<test result >>
Y

[ Cloud-based application under test (CAUT) J

—  data flow
......... p- control flow

<< " >> data

Figure 7: Overview of Clouditor Engine main components (with external test tool)

4.3 EXEMPLARY CONTINUOUBST SCENARIOS

This section presents three exemplary scenarios which are implemented using the Clouditor-
Engine. Each of the exemplary scenarios outlineshe property of the cloud service that the test
is aiming at, an exemplary configuration of the test-based measurement technique as well as
candidate controls for which the measurement techniques can provide measurement results

4.3.1 CONTINUOUSLY TESTING SECURE COMMUNICATION
CONFIGURATION

As the name suggests, secure communication configuration is a type of security property of a
cloud service which holds if communication with the cloud service is secure against disclosure
and manipulation by unauthorized parties. Since customer usually accesses cloud services
remotely using insecure networks, securing communication end-to-end, that is, between the
service and the customer is an indispensable necessity.

Protocols used to securely communicate with cloud service endpoints vary depending on the
type of cloud service, i.e. the cloud service model. While securely communicating with laaS
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translates to, e.g., using SSH to connect to a virtual machine, secure communication with PaaS
and SaaS applications may use HTFS. In the latter case, HTTP uses Transport Layer Security
(TLS) where TLS is a widespread cryptographic protocol aiming to secure communication over
untrusted networks. However, configuring TLS properly is not trivial because it supports various
methods for key exchange, encryption, and authentication (24). A concrete set of such methods
used to secure communication is referred to as a cipher suite where some cipher suites are
considered insufficient to provide secure communication, e.g. if they use the stream cipher RC4
as an encryption algorithm (25).

The continuous test TLSConTestcan be used to continuously check whether securely
communicating with the endpoint of a cloud service is feasible. Thistest continuously evaluates

if the SSL/TLS configuration of a c¢cloud service
with the service.

An exemplary configuration of TLSConTestan be defined as follows: every ten seconds, first
preconditions are tested which establish that the endpoint of the cloud services is reachable
via ICMP and TCP. In case these preconditions are satisfied, following the precondition test, the
SSL/TLS configuration of the endpoint is tested. It fails if the cloud service endpoint exhibits,
e.g. a known SSL/TLS vulnerability, uses seBigned certificates or supports vulnerable cipher
suites. Further, the option Precondition as specialized test suitesitroduced in Section 4.1.6is
used. This means that if one or both precondition test cases fail, then testing of the SSL/TLS
configuration is not executed. In this case, preconditions are tested again in the following
iteration, i.e. ten seconds after the previous precondition test have completed. Finally, the
results produced by TLSConTesindicate how often the SSL/TLS configuration of the cloud
service under test is insecure and how long it takes to fix these misconfigurations.

Measurement results produced by TLSConTestcan support continuous security audits
according to the following controls, e.g.

1 KR¥02 Encryption of data for transmission (transport encryption) of BSI C5(1),

1 EKMO3: Encryption & Key Management Sensi ti ve Data Protection
Controls Matrix (CCM) (26) as well as

1 A.14.1.2 Securing application services on public networks of ISO/IEC 27001:2017).

4.3.2 CONTINUOUSLY TESTINKHPUT VALIDATON

Software-as-a-Service (SaaS) are applications which areleployed on remote infrastruc tures
and which are usually accessible through interfaces such as browsers or standalone program
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interfaces. The control of the customer over the application is usually confined to
configurations of user-specific application settings (28). Providing as well as using SaaS or
SaaShased applications thus requires comprehensively employing web application
technologies, e.g. JavaScript, JSON, HTML and CSS. As a result, SaaS inherits potential web
application vulnerabilities, for example, they can be vulnerable to SQL injections or session
hijacking (29).

The Open Web Application Secuity Project (OWASP) defines a list of ten categories of web
application vulnerabilities which are supposed to contain the most frequently found
vulnerabilities in the wild (30). The category Al - Injection leads that list, thus making it the
most prevalent type of web application vulnerability. While Injection covers various types of
vulnerabilities, e.g., SQL, Ofommands and LDAP injection, SQL injection (SQLI) is amonghe
most common type s of vulnerabilities which web applications possess. If a web application is
vulnerable to SQLI, then malicious code can be inserted into query strings which are parsed
and executed by the SQL server, potentially leading to, e.g., disclosure of confidential data
stored in SQL database or bymssing user authentication (31).

Consider, as an example, that at some point in time audiing a SaaS application revealsthat it
posses®s SQL injection vulnerabilities. Assuming that, as a reaction, data sanitization is
implemented at the database layer using stored procedures which depicts one possible
countermeasure. However, if this exemplary SaaS application makes use offimework such as
Ruby on Rails® then changingthedatabase used by the applicationd
through simple configuration changes. In case the newly deployed database instance does not
use the previously introduced stored procedures to sanitize user input, then previously fixed
SQLI vulnerabilties are reintroduced. Further, a SaaS provider does not need to possess the
resources which are used to create and deploy the web application components but may
leverage a Platform-as-a-Service (PaaS) provider such as Google App Engirté As a result,
another layer of abstraction is added to the architecture of the SaaS application where changes
in the backend rendering the SaaS application vulnerable are hard to detect, even for the SaaS
provider herself.

Checking SQLI vulnerabilities of SaaS application thus requires an approach capable of
continuously, i.e. automatically and repeatedly check whether the cloud service validates user
input. To that end, the continuous test SQLContTestan be used which continuously tests web

application components of a SaaS application for SQLI vulnerabilities.

13 https://rubyonrails.org/
14 https://cloud.google.com/appengine/
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Consider the following exemplary configuration of SQLContTestevery 30 seconds, it uses a
URL of the cloud service under test to scans this endpoint for SQLI vuherabilities. If any
vulnerabilities are indicated by the scan, then the test fails, otherwise it passes. The test results
produced by the continuous test aim at counting the times during which the cloud service is
vulnerable to SQLI within a particular period of time.

Measurement results produced by this continuous test can, for example, support continuous
security audits according to the following controls:

1 RB21. Handling of vulnerabilities, malfunctions and errors & check of open
vulnerabilities of BSIC5 (1),

1 TVM-02: Threat and Vulnerability Management Vulnerability / Patch Management of
CS A0 s (26)@dvvell as

1 A.12.6.1 Management of technical vulnerabilities of ISO/IEC 27001:201327).

4.3.3 CONTINUOUSLY TESTINGECURE INTERFACBONFIGURATION

Secure interface configuration is another security properties of a cloud service which is satisfied
if a cloud service component only exposes those interfaces publiclywhich are actually intended

to be publicly reachable. Common configuration flaws can render a cloud service vulnerable

which, in case of an attacker manages to exploit this vulnerability, can lead to, e.g., disclosure
or manipulation of valuable data store d and processed by the cloud service.

Consider, for example, the Amazon Relational Database Service (AWS RD%) a PaaS
application which provides industry-standard relational database as a web service. This
application uses a special type of security groups, called Amazon RDS Security Group$. These
security groups are used to control what IP addresses or other Amazon resources such as EC2
instances have access to the database service instance. Erroneous configurations of these
security groups may expose the database service to unauthorized access.

The continuous test PortConTestis proposed to determine whether a cloud service temporarily
exposes interface due to insecure configurations. PortConTest continuously probes the
endpoint of a cloud service, either an hostname or IP address, for open ports which should not
be publicly accessible.

An exemplary configuration of this continuous test can be summarized as follows: PortConTest
tests every 30 seconds if the endpoint of the cloud service under test can be reached via ICMP

15 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide//Welcome.html
16 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide//Overview.RDSSecurityGroups.html
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and, at the same time, probes the endpoint for open ports. Testing the reachability of the target
host on the Internet Layer is a precondition test case which is executed concurrently with the
test for open ports. Thus PortConTestmakes use of the preconditions as part of main test suites
of our framework described in Section 4.1.6 As a result, the result of the port scan is only
considered if the precondition holds, i.e. if the target host can be reached via ICMP. The results
produced by PortConTestshow how long it takesthe cloud service provider to fix in secure
interface configurations of the cloud service under test.

Measurement results produced by PortConTesttest can, e.g, support continuous security
audits according to the following controls:

1 RB-22 Handling of vulnerabilities, malfunctions and errors & system hardening of the
BSI C5(1),

T IVS06: I nfrastructure & Virtualizati @8asSecur it
well as

1 A.9.1.2Access to networks and network services of ISO 27001:201827).

Page 38 of 56 D3. 2 Continuous Security |



EUproject 7318453 European Certification Framework ESEC

5 DESIGNOF A UNIVERSAL CONFURATION
LANGUAGE

This chapter introduces the design of the universal configuration language called ConTest The
goal of ConTest is to strictly define the configuration of test -based measurement techniques
in a general manner. The following section identifies and scopes required language constructs.
This analysis draws onthe domain specific constructs used by continuous, test-based
measurements as part of security audits which were introduced in Section 4.1. Thereatfter, the
context-free grammar which generates ConTest is defined (Section 5.2).

5.1 IDENTIFICATION AND C®PING OF REQUIRED
LANGUAGE CONSTRUCTS

This section identifies and defines the scope of the required constructs which the DSLConTest
has to provide. To that end, the description of the building blocks presented in the previous
section are used.

5.1.1 TEST CASE

Recall that a test case"Ydconsists of four elements: Procedures(O), an ordered List of input
parameters (0), anoracle (0) and an ordering number (N):

Y6 ORI &

As the name implies, proceduresdescribe the actual steps taken during a test case. Including
such procedural details in the universal configuration language is unnecessary because the
implementation of the procedures is left the developer implementing the test -based
measurement technigue. Rather, allprocedures of a test case are summarized by a construct
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named TestCaseModulevhich points to a particular component of the measurement technique
which implements the necessary procedures.

The list of input parameters which are used as input to the procedures are included in the
configuration language. An implementation of a test-based measurement technique can then
pass the values specified for input parameter to the TestCaseModule

Test oraclesare mechanisms to decide whether a test passes or fails. Similar to the case of
procedures, a procedural description of the oracle is not included in ConTest given how the
actual evaluation of test case results is left to any concrete implementation. Yet defining
parameters which the oracle uses to reason about test results, e.g. in form of Boolean
expressions, is needed. Tothat end, a list of assert parameters which a continuous test
implementation passes to the test oracle is included in ConTest The ordering number is used

to prioritize test cases0O execution as part of

ConTest Finally, each instance of a test casethat is specified as part of a measurement
techni queds hasombe adgrassahle through a unique ID (unique in scope of the
test configuration instance).

5.1.2 TEST SUITE

A set of test cases) i containing one or more test cases”Yoare combined to a test suite which
also consists of the number of iterations ()), an offset (. ) and the interval (4):

o

YY o iHE

Test casewhich are part of a test suite have to be included inthe me as ur ement
configuration . It was described in the previous section which part of a test case has to be
represented by ConTest In order to bind a test case to a test suite within a measurement
t e ¢ h n icapfigardtisn, the unique ID of a test is used.

The iterations of a test suite, that is, how many times the test suite is to be executed during a
continuous test as well as theoffset, i.e. the fixed waiting time between two test suite executions
are included in the configuration of the test-based measurement technique. Also the interval
between two text suite executions is specified & part of the configuration where it is important
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to support either specifying a fixed interval, the range from which a random value for the
interval is selected or individually fixed intervals per iteration.

Finally, and similarly to the test case definition, each instance of a test suite requires a unique
ID in scope of an instance of the test-based measurementconfiguration .

5.1.3 WORKFLOW

Deciding what test suite to execute next is the responsibility of the workflow. A test-based
measurement technique uses exactly one workflow.

The configuration of a test-based measurement technique does not include the procedural
elements of a workflow but only a pointer to the WorkflowModule which a measurement
technique implementation uses. Furthermore, theconfiguration has to include the test suites
which a workflow may use. To that end, defined test suites are bound to the workflow using

their unique ID.

5.1.4 TEST METRICS

Test metrics allow to reason about a sequence of testsuite results produced by a test-based
measurement technique. A test-based technique may compute one or more test metrics. The
actual procedures which a test metric may use arenot included in the configuration of the
measurement technique because those are specific to the implementation. Similar to a
workflow definition and test case definitions, defining test metrics includes a pointer to

TestMetricModule i.e. the part of the implementation of the test-based technique where the

test metric is actually computed.

5.1.5 PRECONDITIONS

In order to test assumptions made about the environment of the cloud service under test,
preconditions are used. Since preconditions can be either designed as a specialized test suite
or as precondition test cases for further details see Sedion 4.1.6), no additional constructs for

the universal configuration language are needed.
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5.2 FORMAL DEFINITIOBF CONTEST

This section usesExtended-BackusNaur Form (EBNF to define the context-free grammar
which generates ConTest (Figure 8). Terminal symbols are bold to improve readability of the
grammar. Hereafter, the grammar is explained line by line, thereby relating the designed
constructs to the analysis conducted in the previous section.

The start symbol of C 0 n T eggainrias is ConTestfrom which the first rule derives the variable
Test. The rest of the grammar of ConTest is built as follows:

I Lines3to9Testi s def i n@&edtiDb ywhihceh zi s f ol | dDwehidh by
assigns a unigue Id to a configuration of a measurement techniques. Further,
destNameg i s f ol | owe trirg providihge nama with a dedcrgtive name.
Further, Test is defined by exactly one Workflow and by one or more TestMetric
Definitions of these two variable are provided in the following two paragraphs.

t he

I Linesl1lto 16 TestMetrici s def i ned TdsigMetdclDu nw hgiuceh Zi sthef ol | owe

variable ID. Also, TestMetric is defined by the terminals ZlestMetricName |,
ZestMetricModulg , RBesaliptidlty eac h a&whiwhe cghr ouped with
and 2}z for bett &8s followeodh by thehvarialsled 3irind. Wheyeas
AestMetricName audes cr iapt sdfeerpfanatory, the String following

cur

ZestMetricModulez s peci fies the c o ngstebasednmeasrdmenas concr

technique which implements the desired test metric, e.g. a particular classor module.
1 Lines18to 22: Similarto TestMetrig the variable Workflow is defined by the terminals

MWorkflowlDz f ol | tDwe d s b WerkflowNansez z Worldlowklodulez whi ¢ h

ar e each foll owed by t he  TestMetrieModlukZ , Sttrhien g .
WorkflowModulez def i nes t he compone ndstingppfemeatatsmp eci f i ¢

Further, Workflow is defined by one or more TestSuitewhich are enclosed by curly
brackets for better readability.

f Lines24to 37:TestSuitei s defined by the terminkhdnd ZTest

ZTest Sui teNamez f ol $trongv Also, TesySuiteishspecifiedathroughb | e
ZNumber Of Ma fwllowee by dhte vaoablé Int which specifies the upper bound
of iterations a particular test suite is executed during a continuous test-based

measurement.

Next, there is the terminal 'IntervalBetweenTestswhich is followed by either the terminal
‘fixedInterval' with variable Int, by ‘randomizedinterval' with Range or by
'sequenceFixedIntervalvith variable Listint. These alternatives conform with the interval
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settings of a test suite described in Section4.1.3 If the interval is fixed, then the interval
until the next test suite is executed after the previous one completed is static and
defined in seconds by Int. If the time to trigger execution of a test suite is chosen
randomly from a range of possible values (also seconds)then this range is defined by
Range A special case occurs if each iteration has its own fixed interval, e.g. a test suite
which is set to three successive executions where each interval prior to each execution
is still fixed, i.e. not chosen randomly, but each interval assumes an individual value.
Covering this case n ConTest, the terminal 'sequenceFixedIntervalivith variable Listint
is used.

Further, TestSuitei s def i ned b yOffdeth e aTindeou#di neaalcsh Zof whi
followed by the variable Int. As described inSection 4.1.3 offset is a fixed time added

to the interval between successive test suite runs to avoid successive tests affecting

each other. The timeout is the time a test suite run has to successfully complete,
otherwise it is interrupted. This is particularly important if extern al tools such asNmap

are used by the continuous test which may have errors that lead to test casesd and

thus test suites d not completing.

Finally, Testsuiteis defined by one or more TestCase The definition of this variable is
provided in the following paragraph.

I Lines39-46:TestCasei s def i ned TesCasel2 u i iod U dDvas wdell sy
ZMestCaseNamgé aTestCageModule each of which is foll owed
Also, TestCasei s def i ned b ynputParameterg t if @ a lohes Badabld y
Parameter. This means that specifying input parameter for a test case may not be
required by any implementation of a test case d which is assigned to the variable String
whi ch f ol | owS3estCdseModulé r mi nal 2
Finally, TestCases definedby t h e tAssertPdramatérswhich is followed by at
least one Parameteror more. Having at least one AssertParameteris required since the
AssertParameteris needed to be able to decide whether a test case passed or failed.
Parameteris defined one or more KeyValuewhose key is the variableString and whose
value is either defined by the variable Int, String, ListStringor Listint. This corresponds
to our definition of test cases provided in Section 4.1.2 where the concept of oracles
were introduced, that is, methods determining whether a test case failed or passed.
Thus AssertParameterspecify the input values which are provided to test oracles

I Lines 48 - 71: The variablesDigit, Letter, and Symbol are only defined by terminal
symbols (Lines 64- 71). They are used by to constructParameter, KeyValueg ListString
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Listint, String, ID, Int and Range(Lines48 - 62) which are primitive and composite data

types of ConTest
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Figure 8: Context-free grammar of ConTest using Extended BackuNaur Form (EBNF)

Figure 9 shows an exemplary configuration of PortConTest using the language ConTest, one

of the exemplary continuous tests described in Section 4.3.
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1

2 | TestlDd d%ecdea’i—e%da—4f78-b04]1 —69DT50%9e3462

3 | TesiName PortConTest

4 TestDescription "Continuously tests whether the interfaces of a cloud service component are securely configdred.”
5 | Testmetrics{

[ TestMetriclD c5fddead |

7 TestMetricName "InsecureConfigurationCounterMetric”

8 TestMetricModule "basicResultCounter”

9 Description "Ceounts the occurences of failed tests for secure interface configurations.”
10 }

11 TestMetriclD aSfddead {

12 TestMetricName " YearlyInsecureConfigurationMetric”

13 TestMetricModule "cummulativeFailedPassedSequenceDuration”
14 Description "Calculates the ratio between measured insecure interface configuration duration since
15 test start and 31357600 seconds in a year of 365.25 days."
16 }

17 TestMetriclD bifddeal {

18 TestMetricName "DailyInsecureConfigurationMetric™

19 TestMetricModule "cummulativeFailedPassedSequenceDuration”
20 Description "Calculates the daily insecure interface configuration duration starting from 00:00 am to 23:38."
21 }

22 |}

23

24 | Workflow {

25 WorkflowID " PortTestWorkflow”

26 WorkflowName "PortTestwithICMPPreconditionWorkflow”

7 WorkflowModule " Basiclterator”

28 BoundTestsuites {

29 TestSuiteID "PortTestNampTestSuite” {

30 TestSuiteName "SecurelnterfaceConfigurationTestSuoite”
31 NumberOfMaxIteration infinite

32 IntervalBetweenTests |

33 randomizelntervalDuration [30,180]

34 }

35 Offset 13

36 Timeout 300

37 BoundTestCases {

38 TestCaselD PingTest {

39 TestCaseName "PreConditionPingTestCase”

40 TestCaseModule "Ping”

41 Order 1

42 InputParameters {

43 <"count": 10>,

44 <"host": "10.244.250.9" >

45 }

46 AssertParameters {

47 <"round—trip—avg—%lte ":"50 ms" >,

48 <"round—trip—sd—%lte ":"25 ms"»

49 }

50 }

51

52 TestCaselD PortTest |

53 TestCaseName "PortTestCase"

54 TestCaseModule "nmap”

55 Order 1

56 InputParameters {

57 <"host" :"10.244.250.9" >

58 }

59 AssertParameters {

60 <"WhiteListedPortsSeq ™: [80,443 486 ,993]>,
61 <"BlackListedPortsSeq™: [21,22,25]>

62 }

63 }

64 i

65 }

66 }

67 |}

Figure 9: Exemplary continuous testconfiguration of PortConTestusing ConTest
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6 IMPLEMENTATION

In order to implement ConTest, the language development tool XTextis used. This tool is an
open source framework to support the development and implementation of domain -specific
languages. XText provides various features such as parser generation, code geerator or
interpreter. Having provided a sound grammar, it generates Eclipse Plugins, thus integrating
with the Eclipse IDE and providing editor features such as syntax coloring, code completion
and source code navigation.

The next section describes how b define a context-free grammar in XText which uses a
notation very similar to EBNF. Thereafter, Section6.2 present the definition of the XText
grammar to generate ConTest. Finally, Sectior6.3 describes a mde generator which translates
the language constructs of ConTest into tool-specific language constructsused by Clouditor.

6.1 GRAMMAR SPECIFICAN®/ITH XTEXT

XText uses a proprietary language to specify the grammar of a DSL. However, the notation of
this language is very similar to EBNF. Hereafterthe characteristics of the language which XText

uses to specify a grammarare outlined:

1 Each rule consists of a name, a colon, the syntactic fom accepted by that rule, and is
terminated by a semicolon.

1 The semantics of the operators are identical to those the EBNF notation (see paragraph
on EBNF inSection 2.2.2).

1 The first rule is similar to the start symbol of a grammar in EBNF and defines where the
parser starts.

1 Keywords of a DSL are defined using terminal string literals which are enclosed with
single or double quotes.

XText uses a class model to describe the structure of abstract syntax trees (AST). More

specifically, using the Eclipse Modeling Framework (EMFY, XText stores a parsed programs as

in-memory object graphs. These graphs are instances of EMF Ecore models and represents the

17 https://eclipse.org/modeling/emf/
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AST. Through using these structured data models, XText allows to associate smantics of a
meta-model which is supported through the following additional notation:

I XText uses assignment operators to assign consumed information to a feature of the
currently produced object. Consider the following example:

TestSuite
6Test SulbtIBI D6 t s

The syntactic declaration for test suites starts with a keywordd T e s t Sfallowedebly D &
the assignment tsrld = ID. The left-hand side points to a feature tsrld of the current
object. The right hand side ID in this case is a rule. It can also le a keyword, a cross
reference (will be explained in the following paragraph) or an alternative which consists

of any of these options. An assignment is only valid if the return type of the expression

on the right is compatible with the type of the feature . In our above example, ID returns

an EString therefore the feature tsrld needs to be also of type EString

Further, there are different types of assignn
means that the featur e tiadicates thata eattrdcgnbene o0Db]j
assigned a collection of objects, and z?2=2Z e»

is true if the right -hand side of the assignment was consumed.

T Rules that are enclosed with square brackets "[]" indicate a crossreference. Cross
referencing means that instead of assigning an object or a collection of objects to a
feature, only a reference to one ore more objects of the same type written with the
square brackets in the grammar is assigned to a feature. Consider the 6llowing
example:

TestCase :
ZzTest CasellDDZ name
ZTest CaseNBMING desc
TestSuite :
ZBoundTest Cases #=[bestQangdd Test Cases
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The feature boundTestCases is assigned one or more TestCase objects using a cross
reference. Note that, as a default, XText expects the referred object have to have a

feature called name which is used for reference.

6.2 IMPLEMENTATION OF GOEST WITH XTEXT

Figure 10 shows the XText grammar for ConTestNote that definitions of STRING, and INT are
not included in this grammar since these rules are provided by the grammar
org.eclipse.xtext.common.Terminalsa standard set of terminal rules supplied by XText.

When comparing this grammar with the EBNF representation of ConTest 6ee Figure 8), it
becomes apparent that they are slightly different: In case of the XText representation, he
variable Testis also defined by at least one TestSuiteand by at least one TestCase (Lines 150
19 of Figure 10) whereas in the EBNF representation,TestSuiteis part of the definition of the
variable Workflow (Line 22 of see Figure 8) and TestCaseis part of the definition of TestSuite

(Line 36 of seeFigure 8).
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Figure 10: XText grammar definition to generate ConTest

Adapting the EBNF representation of ConTestin the shown manner is only feasible because
XText supports crossreferencing of objects. The advantage of this design is that if a developer
defines a configuration of a test -based measurement technique, then she has to first specify
any test metrics and test cases. Only thereafter can shalefine the test suites and assign already
defined test cases to them. Now, since the developer cannot define a test suite without having
defined a test case and bound it to the test suite, the grammar enforces that at least one test
suite with one bound te st case can be bound to the workflow.

Figure 11 shows an exemplary configuration of the test-based measurement technique
PortConTest(see Section4.3.3) using the XTex grammar definition of ConTest. Note that this
example contains the identical information than Figure 9 which shows an exemplary
continuous test definition using the EBNF grammar definition of ConTest. When comparing
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