
Infopark CMS Fiona

Portal Manager

Infopark CMS Fiona

Portal Manager

While every precaution has been taken in the preparation of all our technical documents, we make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein. All trademarks
and copyrights referred to in this document are the property of their respective owners. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without our prior consent.

Portal Manager – © 2011 Infopark AG 3/57

Contents

1 Preface . 7

1.1 System Requirements . 7

2 The Concept of the Portal Manager . 8

2.1 Tasks of the Portal Manager . 8

2.1.1 Access Control for Content . 8

2.1.2 Dynamic Content . 8

2.1.3 Portlets . 9

2.2 Modular Configuration with Spring Beans . 9

2.3 Architecture of the Portal Manager . 11

2.3.1 Technical Components . 11

2.3.2 Portal Manager and HTTP Server . 11

2.3.3 Response Process . 12

2.4 Authentication and Access Control . 13

2.4.1 Definition of the Terms Used . 13

2.4.2 Authentication Methods . 13

2.4.3 Preventing Delivery of Protected Content . 14

2.4.4 Hiding Links Pointing to Protected Content . 14

2.4.5 Excluding Protected Content from Search Results . 15

2.5 Providing Portlets . 16

2.5.1 Local Portlets . 16

2.5.2 Portlets in a Remote Infopark Portal Manager . 16

2.5.3 Portlets via Web Services . 16

2.6 Requirements . 17

2.7 Restrictions . 17

3 Using the Portal Manager . 18

3.1 Access Control and Personalization . 18

3.1.1 includePortlet . 19

3.1.2 includePage . 19

3.1.3 showIfAccessible . 20

3.1.4 showIfMember . 21

3.1.5 showIfLoggedIn . 21

3.1.6 showIfLanguage . 22

3.1.7 Parameterizing npspm Elements . 22

Portal Manager – © 2011 Infopark AG 4/57

3.1.8 Error Handling with Wrong npspm Tags . 23

3.2 Creating News and News Feeds in the Editorial System . 23

3.2.1 Functions for Creating News Feeds . 23

3.2.2 Using the npsobj newslist Command . 23

3.2.3 Examples . 24

4 Installing and Configuring the Portal Manager . 27

4.1 Using the Portal Manager with another Application Server . 27

4.1.1 Using the Portal Manager with Tomcat 5.x . 27

4.1.2 Using the Portal Manager with WebSphere Application Server 5.1 . 29

4.2 Standard Configuration . 29

4.2.1 Servlet and Filter Definition . 29

4.2.2 Portal Manager Configuration . 29

4.2.3 Configuring a Portlet Web Application . 30

4.2.4 Configuring a Portlet . 31

4.2.5 Portlet Modes and Window States . 32

4.3 User Management in the Portal . 32

4.3.1 Using the Portal Manager with LDAP or ADS . 32

4.3.2 Providing User Properties in Portlets . 32

4.3.3 Retrieving User Properties from the Directory Service . 33

4.4 Using the Portal Manager with Named Virtual Hosts . 34

4.4.1 Prerequisites and Mode of Operation . 34

4.4.2 Sample Configuration . 34

4.5 Providing Portlets via WSRP . 36

4.6 Making WSDL files Available . 37

4.6.1 Using a Proxy Server . 37

4.6.2 Making Included Files Locally Available at the Producer . 37

4.6.3 Making Included files Locally Available at the Consumer . 37

5 Portlets . 39

5.1 News Portlet . 39

5.1.1 Operation . 39

5.1.2 Configuration . 40

5.1.3 Usage . 41

5.2 Login Portlet . 41

5.2.1 Configuration . 42

Portal Manager – © 2011 Infopark AG 5/57

5.2.2 Usage . 42

5.3 Portlet for Editing the Current Page . 42

5.3.1 Operation . 42

5.3.2 Configuration . 42

5.3.3 Usage . 42

5.4 Form Portlet . 43

5.4.1 Configuration . 43

5.4.2 Usage . 46

5.5 Search Portlet . 47

5.5.1 Usage . 47

5.5.2 Configuration . 47

5.5.3 Example . 51

5.6 Portlet for Displaying and Sorting a Table . 55

5.6.1 Operation . 55

5.6.2 Configuration . 55

5.6.3 Usage . 55

5.7 Storing User-Specific Portlet Preferences . 55

5.8 Note on Developing Portlets . 57

Portal Manager – © 2011 Infopark AG 6/57

Preface

Portal Manager – © 2011 Infopark AG 7/57

1
1 Preface

This document addresses administrators who wish to use Infopark Portal Manager, which is part of

Infopark CMS Fiona, for implementing functionalities such as access control, channels, personalization,

or JSR 168-compatible portlets.

The document explains how to configure the Portal Manager, how to integrate it into a given IT

landscape, and how to make use of existing portlets.

A license is required for using any of the supplied portlets except the login portlet.

1.1 System Requirements

The general system requirements also apply to the Portal Manager. Additionally, the following applies:

• If you wish to use authentication and authorization via LDAP, you require an LDAP Server.

http://www.infopark.com/1215287/02-Requirements

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 8/57

2
2 The Concept of the Portal Manager

2.1 Tasks of the Portal Manager

The Portal Manager which is part of Infopark CMS Fiona offers companies and organizations the

possibility to present to their customers and employees any kind of content in a common user interface

and with a common look and feel.

• Access restrictions can be applied to individual files or document parts meaning that access to these

files is given to authorized persons only after logging in.

• Furthermore, content can be made dynamic, i.e. adapted to individual users or user groups.

• Last but not least, the Infopark Portal Manager supports Java Portlet technology which makes it

possible to enrich content by embedding interactive components – so-called portlets – into it.

These functions can easily be accessed by editors and designers working with the editorial system.

2.1.1 Access Control for Content

Access Control makes it possible to restrict the access to content to users who are a member of a

particular user group. To determine a user's group memberships, she is asked to log in as soon as she

requests access-restricted content. If the authorization fails, the request is rejected. This applies to

access-restricted HTML pages as well as binary content such as PDF files.

Additionally, it might also be desired to suppress hyperlinks to access-restricted content if the user is

not permitted to view the link target. Alternatively, a teaser might be displayed. The Portal Manager

offers several functions with which the desired behavior can be achieved.

Access restrictions can be applied to web pages as a whole or to parts of them. If, for example,

you wish to offer special services to the users logged into your site, you can have the links to the

corresponding pages displayed only for logged-in users.

2.1.2 Dynamic Content

What a web page contains is often not determined in advance (statically) but in the moment the page

is delivered. This allows you let the page contain different content, depending on the conditions that

are met when the page is requested. You might, for example, want to include links to the last five

documents the logged-in user has viewed at his previous visit to your site.

Furthermore, content that often changes and is displayed at several locations of the web site can be

included dynamically when the pages are delivered. Thus, only one instance of the content needs to be

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 9/57

created and maintained. This avoids redundant work and reduces the time needed for exporting the

pages into which the content is embedded.

2.1.3 Portlets

Portlets are independent and interactive components of HTML pages. Typical use cases for portlets are

ranking and voting, logging-in, multi-page forms, or news tickers.

The Portal Manager includes a JSR 168 compatible portlet container. JSR 168 is a standard to which

many application servers comply. Thus, if required, the portlets developed for use with the Portal

Manager can be used with other application servers as well. Furthermore, JSR 168 portlets are

modular, meaning that they are part of the content and not vice versa, making it easy to change their

arrangement on web pages. The portal software of many other vendors requires a fixed page layout

that can only be changed with great effort.

Compared to other mechanisms for generating content dynamically (PHP, for example), Java-based

portlets have the following advantages:

• The code is clearly distinct from the content. Portlets are embedded into HTML pages only by

declaration (using npspm tags);

• Object orientation ensures clear interfaces and data structures;

• A higher grade of modularity has the effect that code can be reused much better.

2.2 Modular Configuration with Spring Beans

Infopark's Java web applications consist of several components. By means of the Spring Framework

these components can be easily exchanged and adapted. Infopark CMS Fiona includes several

components, for example for the following tasks:

• Determining users

• Delivering content

• Access control

• Authentication

Each of these components is a so-called bean. The combination of beans to be used in the web

application can be specified by means of one or several XML files. As a result, the available functions

and the behavior of the application can be modified by adapting the configuration files accordingly.

This also allows for integrating custom components.

Every bean is based on a Java class. If a bean is used, the Spring Framework creates an object of the

corresponding class. A bean can be integrated as follows:

<bean id="sessionInvalidator" class="com.infopark.pm.DefaultSessionInvalidator"/>

An optional id makes it possible to refer to the same bean in different locations.

If a bean has properties that need to be adapted to the installation environment, you can set their

values in the following way:

<bean id="httpHelper" class="com.infopark.libs.http.ApacheHttpHelper">

 <property name="connectionTimeout" value="3"/>

 <property name="defaultSocketTimeout" value="60"/>

http://www.springframework.org/

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 10/57

 <property name="maxConnections" value="10"/>

</bean>

A bean can access the functionality of another bean. The permissionManager bean, for example,

requires access to content. For being flexible when choosing the bean that supplies the content, the

permissionManager bean has the documentSource property. To this property the bean to be used

can be assigned as a reference. In the following example, the externalDocumentSource bean is

integrated for providing content. Then, the permissionManager bean is included and configured to

access the content via the externalDocumentSource bean. To the properties permissionReader

and permissionResolver beans are assigned as well. Since the respective bean is only used here, it is

integrated directly in the property, i.e. without using an id.

<bean id="externalDocumentSource" class="com.infopark.pm.doc.FileDocumentSource">

 <property name="documentRoot"

 value="/opt/infopark/fiona/instance/default/export/online/docs"/>

 <property name="inputEncoding" value="UTF-8"/>

</bean>

<bean id="permissionManager" class="com.infopark.pm.doc.DocumentPermissionManager">

 <property name="documentSource" ref="externalDocumentSource"/>

 <property name="permissionReader">

 <bean class="com.infopark.pm.FionaPermissionReader"/>

 </property>

 <property name="permissionResolver">

 <bean class="com.infopark.pm.FionaPermissionResolver"/>

 </property>

</bean>

The properties of a bean are determined by its class. To be able to set the value of a property,

the class needs to have a public method. The name of this method is composed of the string set

followed by the name of the property. Exactly one argument is passed to this method, namely

the value of the property. In the example above, the setDocumentSource() method of the

com.infopark.pm.doc.DocumentPermissionManager class is called. For the list of the public

methods of the Java classes included in Infopark CMS Fiona, please refer to the API documentation

located in the share/doc/javadoc/pm directory in the installation directory of the CMS.

Debugging Hints

Configuration errors have the effect that the web application concerned can no longer be deployed.

Please refer to the log file of the web application for details about the error that occurred. Errors like

this always raise a BeanDefinitionStoreException. Typical reasons for this error include:

• Line ... in XML document ... is invalid

The configuration file contains invalid XML. Check the file for syntactical correctness.

• Bean class [ClassName] not found

The Java class ClassName specified as the bean's class is unknown. The class name might have

been misspelled, or the class can neither be found in the WEB-INF/classes directory nor as a jar

archive in the web application's WEB-INF/lib directory.

• Error setting property values

The value of the property could not be set. If the name has not been misspelled, the method might

not be (public) or the value does not suit the method's argument type.

• Could not instantiate class [ClassName]

http://www.infopark.com/1215419/04-rcnpsd

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 11/57

The specified Java class, ClassName was found. However, an object could not be created. A

subclass of this class may be needed instead.

2.3 Architecture of the Portal Manager

2.3.1 Technical Components

Infopark Portal Manager is a standard servlet application which is deployed into a servlet container

(such as Trifork Application Server). It consists of filters, servlets, and beans plus a few supporting

components.

Filters

Filters analyze and modify incoming requests. They are organized in a so-called filter chain. Before a

request is answered, it is processed by all or a subset of the filters in a defined order. On its way back

to the user, the filters are applied once more, in the reverse order. The filters may add information

to the request and the response, modify both or even block them. Depending on the required

functionality, filters can be exchanged, removed or added. The most important filters supplied with

Infopark Portal Manager are:

• NTLMFilter

• AuthenticationFilter

• PortletFilter

• ContentFilter

• PermissionFilter

Servlets

The task of servlets is to deliver content. In the Portal Manager, a servlet for delivering static (binary)

and dynamic data exists, the ContentServlet.

As is common with Java web applications, the filters and servlets are configured by means of the

web.xml file.

Beans

Beans are exchangable modules that provide particular functions to filters and servlets. They

are defined and configured by means of the pm.xml file. Important beans are, for example, the

userManager, portletContainer, documentManager, and permissionManager beans.

2.3.2 Portal Manager and HTTP Server

In principle, every servlet container also is a web server. Nevertheless, it is currently recommendable

to let an HTTP server work as a web server in front of the Trifork server. Because of its popularity and

stability we recommend to use Apache HTTP Server. The reasons to use an HTTP server are as follows:

• The option exists to use priviledged ports such as 80 or 443 without having to start the webserver

as a superuser. Currently, this is only supported by an HTTP server.

• To be able to continue to use existing log file analyzers, log files in the commons-logging format

as produced by Apache HTTP Server are required. At present, Trifork Application Server cannot

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 12/57

generate log files in this format. From version 6.5, Infopark CMS Fiona provides a corresponding

logging filter.

• Apache HTTP Server encrypts HTTPS pages very fast.

Sometimes, other reasons for placing an HTTP server in front of the Trifork server exist:

• Via the HTTP server, additional authentication mechanisms can be used to set the RemoteUser

which can then be evaluated by the Portal Manager.

• Other modules such as URL rewriting, response compression, bandwidth restriction and the like can

be used in conjunction with the Portal Manager.

2.3.3 Response Process

In the following, assuming the configuration specified above (Apache, Trifork, Portal Manager), the

process of responding to a typical request is explained. The file requested is an HTML file containing a

portlet.

The diagram above illustrates the process for JSPs as well as for binary content.

• Via a browser, a website visitor sends an HTTP request to port 80 of the webserver.

• An Apache webserver accepts the request and redirects it via mod_jk to the Trifork server.

• The Trifork server calls the following filters one after the other for the request:

• Identification via NTLMFilter, for example. This filter determines the identity of the visitor and

sets the RemoteUser.

• The AuthenticationFilter queries the ADS for the RemoteUser and creates a user object.

• The PortletFilter checks whether the incoming request is a portlet request. If so, the filter

redirects the request to the portlet container.

• The PermissionFilter checks whether access restrictions exist for the requested file. If so, it

checks whether the file may be given to the user and ends the processing of the request if this is

not the case.

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 13/57

• With the help of the configuration in the web.xml file, the Trifork determines that the

ContentServlet is responsible for handling the request.

• The ContentServlet requests the file from the DocumentManager.

• In live mode (as opposed to preview mode), the DocumentManager fetches the file via the

FileDocumentSource from the online directory tree, which was created by the Template

Engine.

• The ContentServlet determines the MIME type of the document and delivers the content

either as static or dynamic content, depending on the MIME type.

• The HTML file will be delivered dynamic by processing the document as a Velocity template.

• The Velocity engine recognizes a command embedding a portlet and passes the request to the

PortletContainer.

• The PortletContainer sends a render request to the specified portlet and returns the HTML

code it receives as a response to its request.

• The ContentServlet delivers the assembled page.

• All filters, in reverse order, are now given the opportunity to modify the outgoing response. The

AuthenticationFilter uses it and adds a cookie for faster authentication at the next request.

2.4 Authentication and Access Control

2.4.1 Definition of the Terms Used

Authentication is a two-step process. In step one, a user identifies himself, for example by means of a

user name (login) and a password. In step two, the user's identity is checked.

In a computer program identities (i.e. identified persons) are usually associated with permissions.

Authorization denotes the process a computer carries out to check whether a particular identity

possesses a particular permission, for example the permission to read a particular file.

2.4.2 Authentication Methods

The authentication methods available in the Portal Manager can be extended by providing the filters

that implement the desired authentication functionality. In the standard scope of supply the following

mechanisms are included.

AuthenticationFilter

In Infopark CMS Fiona, the AuthenticationFilter supports the following mechanisms:

• Basic Authentication by means of a user name and a password.

• Single-sign-on tickets, for example for SSO against an SAP Enterprise Portal.

• Adopting a RemoteUser that has already been set. This makes it possible to use any method that

has been placed in front of the Portal Manager.

Single Sign On via Windows' NTLM

The NTLMFilter determines a RemoteUser via NTLM. Therefore, when using Windows and the Internet

Explorer (restrictions apply to Firefox), the user needs to log-in only once to Windows. Subsequently,

his log-in information is also available in the Portal Manager.

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 14/57

The NTLMFilter enforces authentication. However, falling back to Basic Authentication can be enabled

for authenticating users even if NTLM authentication fails.

Particular URLs and IP ranges can be exempted from authentication.

Handling anonymous users

If no explicit log-in request is issued and the RemoteUser has not been set, the request is anonymous.

If an nanonymous user accesses a protected file, the PermissionFilter blocks the request. Instead

of the file, the HTTP response code "401 Unauthorized" is delivered to the user. Typically, the servlet

container redirects this response to an error page that has been defined in the web.xml configuration

file.

In the delivery state of the Portal Manager, anonymous users cannot access content because the

NTLMFilter enforces authentication. However, by specifying an appropriate URL pattern in the

web.xml configuration file of the filter, particular sections of the website can be exempted from

authentication, making them available to anonymous users.

2.4.3 Preventing Delivery of Protected Content

The delivery of textual as well as binary content can be restricted to particular user groups.

Access permissions are checked on the file level. Typically, a file either has no access restrictions (its

content may be accessed by everyone), or user groups permitted to read the file have been defined

(protected content). In the first case, the file is simply delivered. In the second case the Portal Manager

checks whether reasons for delivering the file to the user exist. One such reason is that the user is a

member of at least one user group permitted to read the file.

Alternatively, any number of additional checks can be configured. The scope of delivery includes the

option to check access permissions on the basis of the IP address of the computer requesting a file.

The user groups permitted to read an exported file can be assigned to the corresponding file in the

editorial system in two ways: by means of the Content Navigator or via the Tcl interface of the Content

Management Server (CM). The permission concerned is labelled Live server read permission, its Tcl

keyword is permissionLiveServerRead.

2.4.4 Hiding Links Pointing to Protected Content

The Portal Manager supports the following two mechanisms for suppressing hyperlinks that point to

protected content.

Automatic Link Removal

The Template Engine can be configured to suppress links that point to protected content. A link is

suppressed by removing the href attribute from the a tag. To achieve this, every href attribute is

embedded into Velocity code at export time. At request time, this code checks the user's permission to

access the link target and removes the href attribute if the check fails.

The advantage of this method is that it is safe and reliable. No links to protected files will ever be

published, even if links to such files are placed into the content by, for example, the editorial staff.

However, the method has the following disadvantages:

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 15/57

• Only the link itself is removed. The linked text, for example the title of the protected document, as

well as HTML code possibly used for formatting purposes (like a table cell in a menu) are kept.

• It can be enabled and disabled globally only.

• It slows down the delivery of the pages because additional Velocity code needs to be processed for

every link.

Automatic link removal can be switched on and off in the export.xml file by means of the

export.convertNpspm.hideForbiddenLinks configuration entry. It is enabled by default.

npspm Elements

By means of npspm elements, layouters are given a means to directly modify the HTML code with

which, for example, link lists are displayed, causing the relevant parts to be only visible if the user

meets particular criteria:

• npspm showIfAccessible

• npspm showIfLoggedIn

• npspm showIfMember

2.4.5 Excluding Protected Content from Search Results

Files a user is not permitted to access should not show up in his search results. For this purpose, the

user groups permitted to read a file are indexed together with the contents of the file. This makes

it possible to add the required group-membership condition to the search query. Thus, documents

containing the search words will be added to the search result only if no access restrictions apply, or if

the user is a member of one of the given user groups.

The following sample configuration for the search portlet (SearchPortlet) implements such a query:

#macro (getPermissionQuery)

 #set($groups = "")

 #foreach ($perm in $user.permissions)

 #if ("$!groups" != "")

 #set ($groups = "$groups , "$perm.trim()"")

 #else

 #set ($groups = ""$perm.trim()"")

 #end

 #end

 #if ("$!groups" != "")

 <#ANY>((($groups) <#IN> permissionLiveServerRead), (

 "free" <#IN> noPermissionLiveServerRead))

 #else

 <#YESNO>("free" <#IN>noPermissionLiveServerRead)

 #end

#end

...

<condition>

 <and>

 [Place your search query here]

 <vql-statement>#getPermissionQuery</vql-statement>

 </and>

</condition>

...

From Infopark CMS Fiona, version 6.5, the Portal Manager also supports base queries in addition to the

actual search queries. The base query is made prior to the actual search query. Its purpose is to reduce

the number of documents to be searched. It simplifies the code considerably:

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 16/57

To the and section of the base query the following is added:

<or>

 <vql-statement>

 "free" <#IN>noPermissionLiveServerRead

 </vql-statement>

 #foreach ($group in $user.permissions)

 <vql-statement>

 "$group" <#IN>permissionLiveServerRead

 </vql-statement>

 #end

</or>

2.5 Providing Portlets

For integrating more portal functions and services, the Infopark Portal Manager offers three ways to

make portlets available.

2.5.1 Local Portlets

Local portlets are executed in a web application located in the same Application Server as the Portal

Manager itself. Compared to remote portlets this kind of making portlets available offers the best

performance since no communication via the network is required.

2.5.2 Portlets in a Remote Infopark Portal Manager

Under particular circumstances it makes sense to operate several Infopark Portal Managers:

• Security issues: Portlets processing data critical to safety should be executed on a server protected

against attacks.

• Reusability: If serveral servers are operated in different locations, it is sufficient to make common

portlets available only on one server. This makes it easier to maintain these portlets.

• Load issues: Computationally intensive portlets can be executed on a separate server to improve

the performance of the complete system.

2.5.3 Portlets via Web Services

Infopark Portal Manager makes it possible to use portlets provided by web services. Infopark Portal

Manager accesses these remote portlets by means of HTTP requests to the server that runs them.

The communication between the servers is based on the WSRP specification (Web Services for Remote

Portlets). Commonly, the remote server is a JSR168 portal server. The party that uses portlets offered by

a web service is called consumer, the party that provides them is the producer.

Thus, WSRP creates a common platform for remote portal functionality. By using Infopark Portal

Manager as a WSRP consumer, portlets running on other systems such as IBM Websphere Portal Server

can be utilized.

The Concept of the Portal Manager

Portal Manager – © 2011 Infopark AG 17/57

2.6 Requirements

From version 6.5.1, Infopark Portal Manager, which is included in Infopark CMS Fiona, can be used as a

WSRP 1.0 consumer.

The following requirements must be met to be able to use remote portlets in conjunction with the

Infopark Portal Manager:

• A portal server must exist that offers remote portlets in accordance with the WSRP 1.0 specification

and that serves as a producer.

• The portlets offered via web services must be present on the portal server.

• Infopark Portal Manager and the producer must be able to communicate with each other via HTTP/

HTTPS.

• The WSDL file describing the service as well as all the schemes and name spaces included in it must

be accessible to Infopark Portal Manager even if they are located on remote servers.

• The URL of the WSDL file for this service must be known.

Example:

http://portalstandards.oracle.com/portletapp/portlets?WSDL

2.7 Restrictions

Although a WSRP specification exists, some vendors might have included proprietary features in their

products. Currently, Infopark Portal Manager does not support proprietary features.

Infopark Portal Manager offers an implementation of the WSRP 1.0 specification, except for the

following features:

• Producer Mediated Sharing (CookieProtocol:perGroup) is not supported.

• Anchors (wsrp-fragmentID) are not supported.

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 18/57

3
3 Using the Portal Manager

3.1 Access Control and Personalization

Access control is one of several methods to present personalized information to the visitors of your

website, or to suppress the delivery of content. This concept is often understood solely as a means to

restrict the visitor's access to information. However, displaying different kinds of content selectively to

different groups of users is an equally important goal of access control.

Access control presupposes the possibility to assign read permission to live documents. This possibility

exists in the editorial system where any number of user groups can be added to the live server read

permission field of each file.

When the Portal Manager delivers content it takes account of the permission assignments that have

been made. If access to a document has been restricted via the CMS to particular user groups on

the live server, the Portal Manager will give access to the document only after the user has been

successfully authenticated. Links to this document are deactivated if required.

However, it is not only possible to grant or deny permission on a per-file basis but also partially. For

this, a special language element, <npspm>, is available that can be used in the content itself. The

npspm element can be inserted into the content of a file like a normal HTML element is inserted.

Analogously to npsobj elements, which are translated into HTML text during the export, npspm

elements are translated into a language evaluated on the server side. One of the supported languages

is Velocity because the Portal Manager includes a Velocity engine. The Portal Manager itself is a web

application that runs in a servlet container which includes a JSP engine. Therefore, JSP is another

language into which npspm elements can be translated during the export (see also Architecture of the

Portal Manager). A PHP page cannot contain Portal Manager functionality such as access control or

portlets because the server can evaluate only one language per file.

The language into which npspm elements are translated during the export depends on the name

extension of the file being exported. You can assign languages to file name extensions by means

of the export.convertNpspm.mapping parameter in the export.xml configuration file. For the

reason mentioned above, no other languages than velocity and jsp can be specified as server-side

languages.

Please always use the npspm elements supplied for access control and personalization purposes,

not their Velocity or JSP equivalents into which they have been translated. This ensures that always

properly translated code is used, independently of the Fiona version you are using.

The different access control functions of the npspm element are accessible by means of tag attributes.

http://www.infopark.com/1214195/02-export

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 19/57

3.1.1 includePortlet

Task

This element includes a portlet into an HTML page. If required, you can use an instance identifier

to generate different instances of the portlet. If, for example, you would like to include a voting

portlet, one instance is sufficient and there is no need to specify the instance name even if the portlet

is embedded into several or all the pages of your site. However, if the portlet is used to let users rate

individual pages, an individual instance name must be specified for each page. In this case, the path

of the page might be used as the instance name because it is unique. The path can be determined by

means of an @ reference (see the example below).

Syntax

<npspm includePortlet="urlPath" instance="instanceId" language="lang"

 withBorder="borderFlag" />

If the portlet to be included is part of the same web application as the Portal Manager, urlPath is the

name of the portlet or the alias path that has been specified as portletPathMapping in the pm.xml

file. This name must not be /. However, if the portlet is part of a different web application, urlPath

is the URL path of the portlet relative to the directory containing the web applications (normally

webapps).

By means of the instanceId attribute an instance identifier can be specified. This makes it possible

to use the portlet serveral times on the same website or even on the same page. The identifiers may

consist of any characters.

The language in which a portlet displays itself normally corresponds to the language the user has

specified in his browser settings. The language parameter serves to override this setting.

The value of language, lang, is a code such as en or fr standing for one of the languages supported

by the portlet. These languages are defined in the portlet.xml file which can be found in the WEB-

INF directory of the portlet web application.

As borderFlag, the value of withBorder, true or false can be specified to determine whether the

portlet is to be displayed including a frame and a title bar with buttons.

Example

<npspm includePortlet="/myportlets/ranking" instance="@visiblePath" withBorder="false" />

3.1.2 includePage

Task

This element is replaced with the parsed contents of the referenced page if the current user is

permitted to access the page. Otherwise, the element is ignored. To avoid endless recursions resulting

from cyclic insertions, the maximum nesting depth is limited to 100.

Syntax

<npspm includePage="path" />

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 20/57

As path an internal path needs to be specified. This path is required to point to a file of the document

or publication (folder) type. The element has no content.

If the page with the specified path contains internal links, these links might no longer point to the

desired target after the page has been included. The reason for this is that paths in links are relative. If,

for example, page C is included in A and B, and B is located in a different folder than A, C would have

to be relative to two locations in the folder hierarchy to point to the same location.

This effect can be avoided by using absolute links in included files. However, links with different

prefixes are required for the preview and the live server.

This can be solved by means of velocity code, which is evaluated at runtime. The $document tool

provides the getUrl method which adds the required prefix to an absolute path and converts the

result into an URL. The following example illustrates this by means of a list of links that are created

using a toclist. The code that generates the URL is first stored in an export variable whose value is

then retrieved by means of an @ reference as the href attribute value:

<npsobj list="toclist">

 <npsobj modifyvar="set" name="robustPath">$document.getUrl(

 <npsobj insertvalue="var" name="visiblePath"/>

)</npsobj>

 <npsobj insertvalue="var" name="title"/>

</npsobj>

This code causes the absolute Path of the link target (which refers to the folder hierarchy) to be

retrieved at runtime and complemeted with code which converts the path to the correct URL.

Example

<npspm includePage="/intranet/docs/public/apps" />

3.1.3 showIfAccessible

Aufgabe

The contents of this element is displayed if and only if the user logged into the portal (or

the default user if nobody is logged in) has been granted the live server read permission

(permissionLiveServerRead) for the page referenced by path. By means of negate="true" this

condition can be reversed, meaning that the page is only displayed if the user has not been granted

this permission.

Syntax

<npspm showIfAccessible="path" [negate="negateFlag"]>content</npspm>

As path please specify the path to a CMS file, i.e. an internal path. For negateFlag the values true,

yes, on, 1 (for true), and false, no, off, 0 (for false) can be specified. The negate attribute is

optional.

Example

<npspm showIfAccessible="/intranet/docs">

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 21/57

 Our documents

</npspm>

<npspm showIfAccessible="/intranet/docs" negate="true">

 You have no permission to access our documents

</npspm>

3.1.4 showIfMember

Task

The contents of this element is displayed if and only if the user logged into the portal (or the default

user, if nobody is logged in) is a member of at least one of the specified groups. The contents of the

element is also displayed if no group has been specified. By means of negate="true" this condition

can be reversed, meaning that the page is only displayed if groups have been specified and the user is

not a member of any of these groups.

Syntax

<npspm showIfMember="group1|...|groupN" [negate="negateFlag"]> ... </npspm>

As group1 to groupN group names delimited by vertical bar characters can be specified. It is also

possible to specify no group at all. negateFlag can be set to true, yes, on, 1 (for true), or false, no,

off, 0 (for false). The negate attribute is optional.

Example

<npspm showIfMember="users|admins">

 You are a member of the "users" or "admins" group or of both groups!

 <npspm showIfMember="users" negate="true">

 You are no member of the "users", therefore you must be an admin!

 </npspm>

</npspm>

3.1.5 showIfLoggedIn

Task

This element causes content to be displayed only if a logged-in user (showIfLoggedIn="true") or

anonymous user (showIfLoggedIn="false") requests the page.

Syntax

<npspm showIfLoggedIn="knownFlag"> ... </npspm>

For knownFlag the values true, yes, on, 1 (for true) und false, no, off, 0 (for false) can be used.

Example

<npspm showIfLoggedIn="true">

 You are logged into the portal!

</npspm>

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 22/57

3.1.6 showIfLanguage

Task

The npspm instruction showIfLanguage makes it possible to show or hide parts of the content,

depending on the language setting of the user:

Syntax

<npspm showIfLanguage="lang"> ... </npspm>

For lang one of the language codes consisting of two characters (such as de, en, fr, etc.) can be

specified.

How the user's language is determined depends on the configuration. If no single language has been

associated to the host, the language will be determined either by means of the user's browser settings,

an optional attribute of the logged-in user, or the lang request parameter. The behaviour can be

configured via the LanguageFilter in the file WEB-INF/web.xml.

Example

<npspm showIfLanguage="de">Deutscher Inhalt</npspm>

<npspm showIfLanguage="de" negate="true">English content</npspm>

For German-language users "Deutscher Inhalt" is displayed while "English content" is displayed for all

other users.

3.1.7 Parameterizing npspm Elements

All npspm instructions used in the layout files of the Content Management server except

showIfLoggedIn can be parameterized. It might be necessary to do this in layout files, in which

npspm elements are used for the elements of a list which is generated only at runtime (a toclist or a

list of free links). Parameterizing the npspm instructions means using variables in place of known fields

of the exported file. Thus, the access permission of the files determined by the list instruction can be

checked:

<npsobj list="toclist">

 <npspm showIfAccessible="@self"> ... </npspm>

</npsobj>

To write HTML text (oder other text) to the output file only if a user is a member of at least one of

several user groups, the following npspm instruction can be used:

<npspm showIfMember="@memberList"> ... </npspm>

In the example above, memberList represents a multi-selection field that contains group names. As

described in showIfMember, the group names may also be specified directly using the vertical bar

character as a separator. This is the full sample code with which a list containing permission checks for

each element can be generated:

 <npsobj list="toclist">

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 23/57

 <npspm showIfMember="@memberList">

 <npsobj insertvalue="anchor" name="self">

 <npsobj insertvalue="var" name="title" />

 </npsobj>

 </npspm>

 </npsobj>

The generated list contains only elements the user is permitted to access.

3.1.8 Error Handling with Wrong npspm Tags

If an npspm instruction in a document cannot be interpreted because it contains errors (an undefined

attribute value, for example), an error message is displayed instead of the document.

Additionally, for making it easy to find the error, the location where the error occurred is written to

the log file of the application concerned (see the log directory of the application concerned).

3.2 Creating News and News Feeds in the Editorial System

3.2.1 Functions for Creating News Feeds

The following functions for creating news feeds are available in the CMS:

• In the system settings, channels can be defined. Channels serve to group news by topic, i.e. to

categorize them with respect to what their contents is about. This is similar to categorizing product

descriptions by means of a field named ProductGroup. The channel settings can be accessed via

the Content Navigator's System Configuration menu item available in the Extras menu.

• The versions of files of the Folder and Document type have a built-in field named channels. This is

a multi-selection field; therefore, any subset of the channels that have been defined in the system

configuration can be assigned to it. This is how content and a set of channels are associated with

each other.

• File formats have the canCreateNewsItem field (Mark as new on the live server). If this option has

been chosen, files based on this format are added to an internal news list upon release unless the

channels field of the released version is empty.

• Lists of news article files can be created in which the articles are assigned to any set of channels you

determine. For this, an NPSOBJ instruction and a Tcl command is available. The NPSOBJ instruction

returns, analogous to the toclist instruction, a context list, so that the fields of the version can

be queried. The Tcl command is news.

3.2.2 Using the npsobj newslist Command

For creating news lists in layouts the npsobj newslist command can be used in three ways:

• Creating a list of all news articles in all channels:

<npsobj newslist="all" length="20">

 Text evaluated for each news article

</npsobj>

http://www.infopark.com/1211626/news-where
http://www.infopark.com/1195160/newslist-all

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 24/57

• Creating a news list where each article is contained in at least one of several channels assigned to a

field of the document being exported:

<npsobj newslist="selected" name="Channel-Feld" length="20">

 Text evaluated for each article belonging to the channels specified indirectly

</npsobj>

The field must be either of the string, text, selection, or multiselect type. With the string

and text types, the channels must be a comma-separated list. With selection and multiselect

fields, the field values are used unmodified as channels.

• Creating a list of news assigned to channels that are specified directly:

 <npsobj newslist="selected" value="ch1, ch2, ..." length="20">

 Text evaluated for each article belonging to the channels specified directly

 </npsobj>

Even if a news article has been assigned to more than one of the channels specified directly or

indirectly, it is never contained more than once in the news list generated.

Generated news lists only include articles whose publication date lies in the past (relative to the

export time of the document containing the list). Of course, the news list internally contains all

of the articles to which a channel has been assigned and that were chosen for publication via the

canCreateNewsItem file format field. Initially, the publication date equals the creation date of the

news file. If required, this date can be modified via the validFrom field of the draft version.

A news article that was published accidentally can therefore be removed from the news list by

specifying a future date as the publication date. However, after this change it is still contained in the

internal news list unless the news file itself is deleted or all channels are removed from the channels

field of the article. A file is also removed from the news list if the channels to which the article is

assigned are deleted from the system configuration. However, this does not modify the channels

field of versions, meaning that it may contain the names of nonexistent channels. News articles

assigned to nonexistent channels are not placed into the internal news list again if the missing channel

is created again.

If the Template Engine is used, all the files containing an npsobj newslist instruction are exported

again after changes have been made to files or the channel configuration so that the news lists

generated are always up-to-date. (A usesAll dependency is assigned to the files.)

3.2.3 Examples

Creating a list of 10 most recently published articles

• Create a channel named sitenews.

• Create a file format named newsitem and activate its canCreateNewsItems (Mark as new on the

live server) option.

• Create a file named news1 based on the newsitem format anywhere in the folder hierarchy.

• Into the layout of the start page insert code like the following:

http://www.infopark.com/1195175/newslist-selected
http://www.infopark.com/1212273/03-Dependencies

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 25/57

 <npsobj newslist="all" lenght="10">

 <npsobj insertvalue="anchor" destination="self">

 <npsobj insertvalue="var" name="title" />

 </npsobj>

 </npsobj>

Creating an RSS feed for politics news

• Create a channel named politics;

• Create a file format named newsitem and activate its canCreateNewsItems (Mark as new on the

live server) option.

• Create a field named description and a file format named feed and add description to the

format. Do not activate canCreateNewsItems.

• Create a folder named rssfeeds.

• In this folder create a base layout (mastertemplate) that outputs an RSS-Feed (see below).

• In the same folder, create a file named politicsfeed based on the feed format. Enter as

description "Latest company politics news". As Channels specify politics.

• Set the main content of the base layout to the following:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.92//EN"

 "http://my.netscape.com/publish/formats/rss-0.92.dtd">

<rss version="0.92">

<channel>

 <description>

 <npsobj insertvalue="var" name="description" />

 </description>

 <language>de</language>

 <title><npsobj insertvalue="var" name="title" /></title>

 <link>http://www.mysite.com/</link>

 <copyright>Copyright by Infopark AG</copyright>

 <generator>NPS 6.0</generator>

 <ttl>60</ttl>

 <npsobj newslist="selected" name="channels" length="20">

 <item>

 <title><npsobj insertvalue="var" name="title"/></title>

 <link>http://www.infopark.de<npsobj

 insertvalue="var" name="visiblePath" />

 </link>

 <description>

 <npsobj insertvalue="var" name="description"/>

 </description>

 </item>

 </npsobj>

</channel>

Using the Portal Manager

Portal Manager – © 2011 Infopark AG 26/57

</rss>

For creating an RSS file in a different version (2.0, for example), the layout file can be adapted as

desired.

To create another feed, sports news, by means of the layout file above:

• Create a channel named sports.

• In the folder rssfeeds create a file named sportsfeed based on the feed format and enter

"Sports News" into its description field. Select sports as channels.

• Now create files based on the newsitem format and assign to them the sports channel. They will

appear in the sports news feed.

Sending out Newsletters

• Create a folder named newsletters.

• Write a base layout that generates the contents of the news letter by, for example, reading out

fields of the files concerned.

• Create a file folder named newsletter.

• In the folder newsletters create a file named politics based on the newsletters format.

• Into the main content of politics enter the e-mail addresses, on address per line.

• Write a that sends the exportBlob field of politics to each e-mail address contained in the

main content of politics.

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 27/57

4
4 Installing and Configuring the Portal Manager

4.1 Using the Portal Manager with another Application Server

During the installation of Infopark CMS Fiona, the Trifork Application Server is installed as well. Next

to other applications, the supplied GUI and the Infopark Portal Manager are running in this application

server. Therefore, no other third-party software is required for operating these web applications.

The Portal Manager and the portlets supplied by Infopark – however, not the GUI – can also be

operated in a different application server, if the following prerequisites are met.

1. The application server needs to fully support J2EE 1.4.

2. The application server needs to support the optional feature cross-context dispatching and it must
have been activated.

4.1.1 Using the Portal Manager with Tomcat 5.x

Please proceed as described in the following instructions if you wish to operate the Infopark Portal

Manager in conjunction with the Tomcat Application Server, version 5.5. For Tomcat 5.0, the procedure

is similar. However, you require the installation package for Tomcat 5.0. It is not necessary to install the

compatibility package for using the JDK 1.4.

1. Download Tomcat

1. Download the apache-tomcat-5.5.17.tar.gz package from the Apache Tomcat
website.

2. If Tomcat is to be operated with the JDK 1.4, please also download the apache-
tomcat-5.5.17-compat.tar.gz package.

2. Install Tomcat

1. Unpack the package you downloaded in step 1.1. In the following, the directory created is
referred to as tomcatInstallDir.

2. If Tomcat is operated using the JDK 1.4, please also unpack the package you downloaded in
step 1.2 and use the same target directory as for the Tomcat package because additional jar
files are placed into the tomcatInstallDir/common/lib directory.

3. Adapt the PATH environment variable so that the JDK to be used can be found.

4. If on the same machine a Trifork server is installed which uses the standard ports, adapt three

ports in the tomcatInstallDir/conf/server.xml file:

<Connector port="8080" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25"

 maxSpareThreads="75"

 enableLookups="false" redirectPort="8443"

http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/download-55.cgi

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 28/57

 acceptCount="100"

 connectionTimeout="20000" disableUploadTimeout="true" />

<Connector port="8009"

 enableLookups="false" redirectPort="8443"

 protocol="AJP/1.3" />

<Connector port="8082"

 maxThreads="150" minSpareThreads="25"

 maxSpareThreads="75"

 enableLookups="false" acceptCount="100"

 connectionTimeout="20000"

 proxyPort="80" disableUploadTimeout="true" />

5. Copy the JavaBeans™ Activation Framework from fionaInstallDir/share/lib/

activation.jar to tomcatInstallDir/common/lib.

6. Copy JavaMail from fionaInstallDir/share/lib/mail.jar to tomcatInstallDir/common/

lib.

7. Recursively copy the PM and PM-PL web applications from the fionaInstallDir/

instance/myInstance/webapps directory to tomcatInstallDir/webapps/.

8. In the files tomcatInstallDir/webapps/PM/WEB-INF/web.xml and tomcatInstallDir/

webapps/PM-PL/WEB-INF/web.xml, adapt the path to the license.xml file contained in the

config directory of your CMS instance. If the CMS is running on a different machine, also copy

the licence file to a location where Tomcat can find it.

9. In the tomcatInstallDir/webapps/PM/WEB-INF/logging.xml and tomcatInstallDir/

webapps/PM-PL/WEB-INF/logging.xml files, enter the path to the directory where the log files

of the web applications are located. Example:

<param name="File" value="tomcatInstallDir/logs/PM.log"/>

10.Delete the file trifork-app-conf.xml from the META-INF directories of both web applications,

PM and PM-PL. Into each directory place a version of the file context.xml, adapted to the

respective web application. For PM:

<Context docBase="${catalina.home}/webapps/PM" path="/PM" crossContext="true" />

For PM-PL:

<Context docBase="${catalina.home}/webapps/PM-PL" path="/PM-PL" crossContext="true" />

11.Prepare PM and PM-PL for live operation:

1. If you use version 6.0.x of the Portal Manager, please deactivate the
com.infopark.pm.PreviewDocumentSource bean in the documentManager bean
contained in the tomcatInstallDir/webapps/PM/WEB-INF/pm.xml file (by commenting
it out)

2. Activate the com.infopark.pm.FileDocumentSource bean (by removing the comment
characters). In the documentRoot property, specify the path to the export directory.

3. In the userManager bean contained in the tomcatInstallDir/webapps/PM/WEB-INF/
pm.xml file, activate the user manager bean you wish to use and configure it. Deactivate
the other user managers.

4. In the searchEngine bean contained in the tomcatInstallDir/
webapps/PM-PL/WEB-INF/pm.xml file, deactivate the bean in the

http://java.sun.com/products/javabeans/jaf/
http://java.sun.com/products/javamail/

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 29/57

com.infopark.libs.search.cm.AdvancedCmSearchEngine class and activate this bean
in the com.infopark.libs.search.ses.SesSearchEngine class. Adapt the host and
port properties so that they match the Search Server ports of the CMS instance (see the
server.xml file in the config directory of the instance.

5. Change the portletPathMapping specified in the tomcatInstallDir/webapps/PM-PL/
WEB-INF/pm.xml file to /PM-PL = /PM-PL.

12.Start the Tomcat server by running tomcatInstallDir/bin/startup.sh. You can now open

the following URL to access your exported pages containing portlets:

http://myTomcatHost:myTomcatPort/PM/

13.Should problems arise, please look into the log files contained in the tomcatInstallDir/logs

directory. With general errors, the catalina.out and catalina.yyyy-mm-dd.log files are

instructive. With application-specific errors, please examine the files configured in step 9 above.

4.1.2 Using the Portal Manager with WebSphere Application Server 5.1

Please proceed as follows to use the Infopark Portal Manager with WebSphere Application Server 5.1.

1. Copy the license file license.xml to webapps/PM/WEB-INF.

2. In the webapps/PM/WEB-INF/web.xml configuration file set the value of the licenseFile
context parameter to /WEB-INF/license.xml.

3. Store the contents of the webapps/PM directory in a ZIP file and name it PM.war.

4. Deploy the PM.war archive by means of the WebSphere Administrative Console into /PM.

Please repeat the steps above analogously for webapps/PM-PL.

4.2 Standard Configuration

4.2.1 Servlet and Filter Definition

The Portal Manager can be configured by means of the two files web.xml and pm.xml. These files

can be found in the WEB-INF directory located below the web application directory of the Portal

Managers. In the CMS Standard installation, the path is (relative to the CMS directory):

instance/default/webapps/PM/WEB-INF

Just as in other web applications, the web.xml file serves to declare the servlets, servlet filters etc. used

and to specify their URL schemas.

4.2.2 Portal Manager Configuration

The current configuration of the Portal Manager can be found in the pm.xml file. This file is a standard

Spring bean file. In the standard configuration the following beans exist:

• hostConfig (com.infopark.pm.HostConfig)

Determines the hosts for which requests are accepted as well as the languages supported. See also

<npspm showIfLanguage> and the portlet configuration in the WEB-INF/portlet.xml file.

• userManager (com.infopark.pm.user.UserManager)

http://www.springframework.org/

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 30/57

The user manager of the system, queried by the AuthenticationFilter for accessing user data.

• portletContainer (com.infopark.pm.portlet.PortletContainer)

Manages the portlets defined in the file WEB-INF/portlet.xml and makes them accessible for

handling dynamic content.

• documentManager (com.infopark.pm.DocumentManager)

Provides the content for the ContentServlet. For this, the supplied implementation makes use of

a configurable com.infopark.pm.DocumentSource.

• permissionManager (com.infopark.pm.PermissionManager)

Provides the PermissionFilter with the names of the groups whose users are permitted to

access content to be delivered. From version 6.7.1, the permissionManager does no longer exist

since the AuthorizationManager covers its functions.

• authorizationManager (com.infopark.pm.user.AuthorizationManager)

Uses the specified methods (com.infopark.pm.user.Authorizer) to check whether the user

may access content.

• templateEngine (com.infopark.pm.TemplateEngine)

Prepares dynamic content so that the ContentServlet can compute the resulting document.

• contentHandlerMap (java.util.Map)

Determines which content is to be delivered by the ContentServlet and

how this is done (dynamically or statically). For each MIME type a bean of the

com.infopark.pm.doc.ContentHandler type can be specified. Individual implementations are

used for static and dynamic content.

4.2.3 Configuring a Portlet Web Application

The Portlets contained in a web application can be configured by means of the WEB-INF/

portlet.xml file which has the following structure:

<?xml version="1.0" encoding="UTF-8" ?>

<portlet-app version="1.0"

 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

 <portlet>

 ...

 </portlet>

 ...

 <custom-portlet-mode>

 ...

 </custom-portlet-mode>

 ...

 <custom-window-state>

 ...

 </custom-window-state>

 ...

 <user-attribute>

 ...

 </user-attribute>

 ...

</portlet-app>

The elements have the following meaning:

• portlet configures a portlet

• custom-portlet-mode configures a non-standard portlet mode such as about or print.

• custom-window-state configures a non-standard window state.

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 31/57

• user-attribute defines optional user properties made available to the portlets.

Security constraints (security-constraint) are not supported by the Infopark Portal Manager.

4.2.4 Configuring a Portlet

Every portlet can be configured by means of a portlet element. The following example includes the

most important elements:

 ...

 <portlet>

 <portlet-name>example</portlet-name>

 <portlet-class>com.infopark.example.Portlet</portlet-class>

 <init-param>

 <description>my init param description</description>

 <name>host</name>

 <value>127.0.0.1</value>

 </init-param>

 <expiration-cache>0</expiration-cache>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>edit</portlet-mode>

 </supports>

 <supported-locale>en</supported-locale>

 <supported-locale>de</supported-locale>

 <resource-bundle>com.infopark.example.localizer</resource-bundle>

 <portlet-preferences>

 <preference>

 <name>readOnlyPreference</name>

 <value>foo</value>

 <value>bar</value>

 <read-only>true</read-only>

 </preference>

 <preferences-validator>com.infopark.example.Validator</preferences-validator>

 </portlet-preferences>

 </portlet>

 ...

The elements have the following meaning:

• portlet-name: The portlet identifier. The identifier must be unique in the web application. It is

used to include the portlet.

• portlet-class: The Java class that provides the portlet functionality. This class must be contained

in a jar archive in the WEB-INF/lib directory or as a compiled class in WEB-INF/classes.

• expiration-cache: This option allows the Portal Manager to cache the portlet contents for the

number of seconds specified, meaning that the content is not recomputed during this period of

time. 0 deactivates this function, -1 permits unlimited caching (until an action is performed).

• init-param: A configuration parameter for this portlet. Any number of init-param elements

may be specified for a portlet.

• description: Optional description

• name: The parameter name

• description: The value of the parameter

• supports: Configures supported MIME types and portlet modes:

• mime-type: Configures a supported MIME type. For each type, an individual element needs to be

specified, the MIME type is obligatory.

• portlet-mode: Other portlet modes than VIEW can be configured here.

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 32/57

• supported-locale: A supported language. Typically, only an ISO language code is specified here,

the country code, separated by an underscore character is optional. A portlet can support one or

more languages, i.e. the element can be specified more than once.

• resource-bundle: The name under which the resources can be found (without the language or

the .properties suffix).

• portlet-info: As an alternative to resources, a title, a short title, and keywords can be specified

directly using this element. The corresponding subelements are: title, short-title, and

keywords.

• portlet-preferences: For every portlet, any number of presets can be configured. The values of

these settings can be modified at runtime unless the setting is flagged as read-only. Additionally, a

validator class can be specified.

The expiration-cache option is supported from version 6.5.2 of the CMS. With computationally

intensive portlets, this option may improve the performance of the portal.

4.2.5 Portlet Modes and Window States

From version 6.5.1, you can use your own portlet modes and window states (not defined in the JSR168

specification). To do this, please create the file portlet.xml in the WEB-INF directory of the PM web

application and declare your custom portlet modes and windows states in it.

Example:

 ...

 <custom-portlet-mode>

 <portlet-mode>preview</portlet-mode>

 </custom-portlet-mode>

 <custom-portlet-mode>

 <portlet-mode>urn:javax:portlet:mode:custom:about</portlet-mode>

 </custom-portlet-mode>

 <custom-window-state>

 <window-state>solo</window-state>

 </custom-window-state>

 ...

4.3 User Management in the Portal

4.3.1 Using the Portal Manager with LDAP or ADS

To connect the Portal Manager to an ADS server, please configure the AdsUserDirectory bean in the

pm.xml file located in the Portal Manager web application.

Please adapt the properties of the userDirectory as needed. The individual parameters are

described in the configuration file.

4.3.2 Providing User Properties in Portlets

From version 6.5.1 of the Infopark CMS, user properties provided, for example, by a directory service

can be accessed in a portlet by means of the javax.portlet.PortletRequest.USER_INFO request

attribute.

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 33/57

The attributes provided by the portal are listed in the portlet.xml file. In the following example, this

is shown for two attributes:

<user-attribute>

 <name>user.name.real</name>

</user-attribute>

<user-attribute>

 <name>user.business-info.online.email</name>

</user-attribute>

However, in most cases these attributes will not be provided under their standard names. Therefore,

the Infopark Portal Manager offers the possibility to map standard names to the names under which

they are made accessible. For this, the userAttributeMapper property in the portletContainer

bean defined in the pm.xml file needs to be set.

This is shown in the following example for mapping the attributes above to two attributes that also

exist in the Content Manager:

<property name="userAttributeMapper">

 <bean class="com.infopark.pm.user.SimpleAttributeMapper">

 <property name="mapping">

 <value>

 user.business-info.online.email = email

 user.name.real = realName

 </value>

 </property>

 </bean>

</property>

By means of this configuration, a portlet can access the email user property using the following code:

Map userInfo = (Map)request.getAttribute(PortletRequest.USER_INFO);

String email = (String)userInfo.get("user.business-info.online.email");

4.3.3 Retrieving User Properties from the Directory Service

With Infopark CMS Fiona from version 6.5.0, further user properties maintained in an LDAP or ADS

directory service can be retrieved and used in the Portal Manager. For this, the attributes to be

retrieved need to be added to the attributes property of the bean configuration of the directory

service. Example:

 ...

 <bean class="com.infopark.pm.user.AdsUserDirectory">

 ...

 <property name="attributes">

 <map>

 <entry key="mail">

 <map>

 <entry key="type"><value>single</value></entry>

 </map>

 </entry>

 <entry key="name">

 <map>

 <entry key="type"><value>single</value></entry>

 </map>

 </entry>

 </map>

 </property>

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 34/57

 ...

 </bean>

 ...

The value of key in an attributes entry is interpreted as the corresponding name of the attribute in

which the user property is stored.

As the type of an attribute either single (a return value) or list (a list of return values) can be

specified.

4.4 Using the Portal Manager with Named Virtual Hosts

With Infopark CMS Fiona, several websites can be operated on name-based virtual hosts. The websites

are maintained with the CMS as separate instances and are served dynamically by the Portal Manager.

It is possible to use the same instance for several virtual hosts.

4.4.1 Prerequisites and Mode of Operation

For operating the virtual hosts, Apache webserver with mod_jk, Trifork Application Server, and

Infopark Portal Manager are required.

For Apache webserver to accept requests sent to the virtual hosts and redirect them to the Trifork

server using mod_jk, the following directive in the Apache configuration is used:

 jkMount /* triforkWorker

The Trifork server in turn redirects the requests to the Portal Manager web application which,

based on its configuration, determines the content assigned to the virtual host. For this, the

VirtualHostConfig configuration element is used.

Since only one document root directory exists in the Portal Manager configuration (documentSource)

for all virtual hosts, it is set to any directory in which then a symbolic link is created for each virtual

host. The symbolic links point to the content associated with the corresponding virtual hosts.

4.4.2 Sample Configuration

Apache

 # /etc/httpd/httpd.conf

 ...

 NameVirtualHost 10.1.110.40:80

 NameVirtualHost 10.1.110.40:443

 <VirtualHost 10.1.110.40:80>

 ServerName www.infopark.de

 ServerAlias infopark.de

 ErrorLog /var/log/httpd/error_log

 CustomLog /var/log/httpd/www.infopark.de-access_log combined

 CustomLog /var/log/httpd/www.infopark.de-redir_log redirectlog

 JkMount /* triforkWorker

 ...

 </VirtualHost>

 <VirtualHost 10.1.110.40:80>

 ServerName www2.iico.de

 ErrorLog /var/log/httpd/error_log

 CustomLog /var/log/httpd/www.iico.de-access_log combined

 JkMount /* triforkWorker

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 35/57

 </VirtualHost>

 # /etc/httpd/workers.properties

 worker.list=triforkWorker

 # Set properties for triforkWorker (ajp13)

 worker.triforkWorker.type=ajp13

 worker.triforkWorker.host=localhost

 worker.triforkWorker.port=8009

 worker.triforkWorker.lbfactor=250

 worker.triforkWorker.cachesize=50

 worker.triforkWorker.cache_timeout=300

 worker.triforkWorker.socket_keepalive=1

 worker.triforkWorker.recycle_timeout=300

Portal Manager

Here, one Portal Manager is used for all the virtual hosts. However, you might also define several

workers in the Apache configuration to assign the virtual hosts to any number of Portal Managers.

This might be done to improve the performance with Portal Managers running on individual

computers.

 # /opt/Infopark/CMS-Fiona/instance/internet/webapps/PM/WEB-INF/pm.xml

 ...

 <bean id="hostConfig" class="com.infopark.pm.VirtualHostConfig">

 <property name="properties">

 <props>

 <prop key="infopark_de.locales">de</prop>

 <prop key="infopark_de.http.enable">true</prop>

 <prop key="infopark_de.http.host">www2.infopark.de</prop>

 <prop key="infopark_de.http.port">80</prop>

 <prop key="infopark_com.locales">en</prop>

 <prop key="infopark_com.http.enable">true</prop>

 <prop key="infopark_com.http.host">www2.infopark.com</prop>

 <prop key="infopark_com.http.port">80</prop>

 <prop key="iico_de.locales">de</prop>

 <prop key="iico_de.http.enable">true</prop>

 <prop key="iico_de.http.host">www2.iico.de</prop>

 <prop key="iico_de.http.port">80</prop>

 </props>

 </property>

 </bean>

 ...

 <bean id="documentSource" class="com.infopark.pm.doc.WebappDocumentSource">

 <property name="documentSource">

 <bean class="com.infopark.pm.FileDocumentSource">

 <property name="documentRoot" value="/var/www/vhosts" />

 <property name="inputEncoding" value="UTF-8" />

 </bean>

 </property>

 <property name="inputEncoding" value="ISO-8859-1" />

 </bean>

 ...

Creating Symbolic Links

Afterwards, the symbolic links are created in the directory that has been specified as the

documentSource.

 cd /var/www/vhosts

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 36/57

 ln -s /opt/Infopark/CMS-Fiona/instance/internet/export/online/docs infopark_de

 ln -s /opt/Infopark/CMS-Fiona/instance/internet/export/online/docs infopark_com

 ln -s /opt/Infopark/CMS-Fiona/instance/iico/export/online/docs/iico iico_de

Deploying the Portal Manager

Finally, the Portal Manager needs to be deployed again for the configuration changes to come into

effect. For this, run the following command from the instance directory concerned:

 ./instance/instancename/bin/rc.npsd deploy PM

4.5 Providing Portlets via WSRP

From version 6.5.1 of Infopark CMS Fiona, the Infopark Portal Manager is able to provide remote

portlets from a WSRP producer. This can be done by means of a virtual context path that is specified in

the Portal Manager. Such a virtual context path refers by means of an URL to a WSDL file (WSDL = Web

Service Description Language) which describes how the service can be accessed.

Since remote portlets are made available in this way, they behave like portlets of the Infopark Portal

Manager and can be addressed using normal npspm-Syntax.

To make WSRP portlets available, please extend the ProxyPortletContainer bean located in the

webapps/PM/WEB-INF/pm.xml configuration file of the CMS instance concerned. Please add the

wsrpPathMapping property and a value subelement to the bean configuration. As the value of the

value element specify for each WSRP producer a line containing the virtual context path and the

WSDL URL to be used. Example:

/WS-ORA = http://portalstandards.oracle.com/portletapp/portlets?WSDL

If the URL points to a WSDL file which contains references to external sources not available for some

reason (firewall access restrictions, for example), please download the WSDL file and make the

reference point to its path in the local file system using file:///. Example:

/WS-IBM = file:///var/temp/portalserver-ibm.wsdl

The following is a sample excerpt from the pm.xml file:

<bean id="portletContainer" class="com.infopark.pm.portlet.ProxyPortletContainer">

 <property name="preferencesStorage">

 <bean class="com.infopark.pm.FilesystemPreferencesStorage" />

 </property>

 <property name="cacheManager" ref="cacheManager" />

 <property name="wsrpPathMapping">

 <value>

 /WS-ORA = http://portalstandards.oracle.com/portletapp/portlets?WSDL

 /WS-IBM = file:///var/temp/portalserver-ibm.wsdl

 </value>

 </property>

 <property name="webserviceRefreshInterval" value="0" />

</bean>

Changes to the configuration must be completed by restarting the Application Server. If the Portal

Manager and the Producer are able to communicate with each other, the handles of the portlets can

then be retrieved using the following URL:

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 37/57

http://my.server:8080/PM/debug/

Once a portlet has been identified, it can be embedded into the content analogously to the following

example, whereby portletHandle refers to the handle of the portlet to be included:

<npspm includeportlet="/WS-ORA/portletHandle" />

Other Properties

• webserviceRefreshInterval: The interval for updating the list of the remote portlets (in

seconds).

4.6 Making WSDL files Available

The WSDL file describing the WSRP service normally contains references to schemes or name spaces

located on internet servers, for example http://www.oasis-open.org/committees/wsrp/

specifications/version1/wsrp_v1_bindings.wsdl, http://www.w3.org/XML/1998/

namespace). If your network configuration prevents the Infopark Portal Manager to connect via

HTTP/HTTPS to servers outside the intranet or the DMZ, the targets of the references need to be made

available differently because the consumer requires the complete description of the remote services.

For this, the following methods can be used:

4.6.1 Using a Proxy Server

If your network policy permits the Infopark Portal Manager to connect to the internet and to the

producer via a proxy server, you might want to start the Application Server running the Portal

Manager with the proxyHost and proxyPort Java options.

If you use the Trifork Server, these options can be added to the rc.npsd.conf configuration file

located in the bin directory of the CMS instance concerned. Example:

 set conf(triforkArgs) [list server start -devel -vmargs=-server\

 -vmargs=-Xmx256m -vmargs=-Xms256m\

 -vmargs=-XX:MaxPermSize=128m -DproxyHost=mein.server \

 -DproxyPort=3128]

Please note that this permits all applications to connect to the internet via the proxy server.

4.6.2 Making Included Files Locally Available at the Producer

Configure your producer in such a way that it only includes XML files available locally, or adapt the

WSDL file accordingly. The references in the WSDL file can then be resolved by means of requests to

the producer.

4.6.3 Making Included files Locally Available at the Consumer

If changes cannot be made to the producer, the WSDL file and all the XML files it includes can be made

available locally. This is the least flexible method because changes to the producer always need to be

reconstructed locally.

To do this, please use a browser to get the WSDL file via its URL and save it to your local file system.

Then edit this file and replace all imports from external web servers with references to local files,

Installing and Configuring the Portal Manager

Portal Manager – © 2011 Infopark AG 38/57

meaning that you need to download all the external references. Repeat this for all downloaded files

until all external references are available locally and are included instead of their remote counterparts.

Place all the files into a single directory of the application server and configure this producer's

wsrpPathMapping in the pm.xml as a local WSDL file.

Portlets

Portal Manager – © 2011 Infopark AG 39/57

5
5 Portlets

This section describes the function and configuration of portlets that can be used in conjunction with

the Infopark Portal Manager.

If not stated otherwise in the individual portlet descriptions, a separate licence is required for using

the portlets (except for the login portlet) described in this document and its subdocuments.

5.1 News Portlet

Many companies provide latest news as RSS news feeds. RSS (really simple syndication) is a

standardized method for distributing information. An RSS feed is an XML document which contains

structured data (for example a title, a summary, and a link) so that it can be processed by computers.

With Infopark CMS Fiona, such feeds can be generated automatically in such a way that the access

permissions of the portal users are taken into account when the feeds are delivered by the Portal

Manager. This means that the news feeds can be personalized. All RSS versions (0.90, 0.91, 0.92, 0.93,

0.94, 1.0, and 2.0) are supported.

For logged-in portal users, the portlet marks the articles that have already been read. In the overview,

these articles can then be hidden or displayed in a simplified manner. For the formats RSS 0.93, 0.94,

and 2.0 and Atom 0.3 and 1.0, Infopark CMS Fiona 6.7.0 and later also compares the publication dates

of the articles with the dates at which the user has read them. This is done for the purpose of marking

updated articles as unread again.

Using this portlet requires a separate license.

5.1.1 Operation

The news portlet has two modes, viewing (view) and editing (edit). You can switch from one mode to

the other by means of a button in the title bar. In the view mode, the portlet displays the articles of

the (items) of the currently selected news feed. If several news feeds have been configured, you can

use a selector to choose one:

Portlets

Portal Manager – © 2011 Infopark AG 40/57

Like a bookmark, each news feed consists of a name and the neews feed URL. In editing mode, this

configuration data can be changed and news feeds can be resorted, added, or deleted. For this, the

portlet displays a list of the feeds:

You can only switch to the editing mode, if the portlet is displayed with a border around it. The

following screenshot illustrates how the title and the URL can be edited.

5.1.2 Configuration

The portlet is named news and its configuration can be found in the portlet.xml file. Three optional

initialization parameters exist:

• updateInterval defines the time in seconds after which the news feed is fetched again.

• maxItems defines the maximum number of articles per user for which the portlet stores the read/

unread state. Please choose a value twice the number of articles in your news feed. Otherwise news

may reapppear as unread although the portlet user has read them.

Portlets

Portal Manager – © 2011 Infopark AG 41/57

• maxItemLength defines the maximum text length of an article description. If the length of a

description exceeds this value, it will be trimmed and '...' is appended to it.

Example for Setting Initialization Parameters

<init-param>

 <name>updateInterval</name>

 <value>5</value>

</init-param>

<init-param>

 <name>maxItems</name>

 <value>5</value>

</init-param>

<init-param>

 <name>maxItemLength</name>

 <value>160</value>

</init-param>

Furthermore, a setting exists, feeds with which any number of feeds can be preset for new users. Each

feed definition consists of a name and the URL of the feed, separated by the | character. Therefore,

neither the name nor the URL must contain this character. Example:

<portlet-preferences>

 <preference>

 <name>feeds</name>

 <value>

 Infopark News|http://www.infopark.de/rss

 </value>

 <value>

 Slashdot News|http://slashdot.org/index.rss

 </value>

 <value>

 Yahoo! News|http://rss.news.yahoo.com/rss/topstories

 </value>

 </preference>

</portlet-preferences>

5.1.3 Usage

By means of the following code the portlet can be placed into layout files:

<npspm includePortlet="/PM-PL/news" ... />

If the portlet is located in another web application, please specify its name instead of PM-PL.

5.2 Login Portlet

The login portlet allows the portal users to log into the portal:

Furthermore, the portlet allows logging off from the portal:

Portlets

Portal Manager – © 2011 Infopark AG 42/57

5.2.1 Configuration

The users are authenticated by means of the user manager configured in the /instance/instName/

webapps/PM/WEB-INF/pm.xml file.

5.2.2 Usage

The portlet can be placed into layout files by means of the following instruction:

<npspm includePortlet="/PM-PL/login" ... />

5.3 Portlet for Editing the Current Page

The edit-page portlet allows the user to edit the document currently displayed in the portal by means

of the editorial system, i.e. the Content Navigator.

Using this portlet requires a separate license.

5.3.1 Operation

Clicking the link displayed by the portlet causes a Content Navigator page to be opened in which the

corresponding document is selected. If the user is logged into the portal, the portlet tries to log the

user into the Content Navigator using the user's user name and password. If this fails, the log-in page

is displayed.

This portlet is very useful if the portal users also work as editors in the CMS.

5.3.2 Configuration

As with all other portlets, the layout of this portlet is defined by means of Velocity templates located

in the /WEB-INF/templates directory of the PM web application. The layout can be adapted as

desired.

5.3.3 Usage

The portlet can be placed into layout files by means of the following instruction:

<npspm includePortlet="/PM-IP/editPage" ... />

Portlets

Portal Manager – © 2011 Infopark AG 43/57

5.4 Form Portlet

The form portlet offers a simple way of providing a sequence of form pages.

Using this portlet requires a separate licence.

By means of the corresponding buttons, the user can move to the previous or next page of the

sequence of forms. When the last form is submitted, normally an action is performed. For example, the

form data can be sent via e-mail.

The forms and their sequence as well as the action to be performed at the end, are defined in an

XML file. The dynamic display of the forms on the web page can be controlled by means of velocity

templates.

Each sequence is defined in an individual directory below WEB-INF/templates/flow. The portlet can

be integrated into the content by specifying the desired sequence definition directory. The definition

always includes an XML file, flow.xml, in which the form pages and their fields are specified. Also, for

each form page, a Velocity template used to generate the form's HTML code needs to be placed into

the definition directory. These templates are referenced by the XML file. Furthermore, the definition

includes the action mentioned above. This action is implemented by a Java class. For the purpose of

illustrating a typical use case, the sample files for sending the form data via e-mail are included.

5.4.1 Configuration

Form Definitions

The form pages are defined in the file flow.xml. The root element of this file is always flow.

Optionally, this element can have an attribute named result which defines the result template. If

result has not been specified, result.vm will be used. Inside flow, each form page is defined by

means of a form form element, and the final action is specified using an action element.

Each form element defines exacly one form page. By means of its template attribute, the name of the

Velocity template is specified that serves to display this form page. This template file must be located

in the same folder as the flow.xml definition file. An example:

<?xml version="1.0" encoding="UTF-8" ?>

 <flow>

 <form template="contact.vm">

 <field name="gender" type="select"

 required="true" flags="menu">

 <item default="true">female</item>

 <item>male</item>

 </field>

 <field name="firstName" type="text"

 regex="([\p{Lu}][\p{Ll}.-]* *)+" error="errorInvalidName" />

 <field name="lastName" type="text" required="true"

 regex="([-\p{Lu}\p{Ll}]+ *)+" error="errorInvalidName" />

 <field name="email" type="text"

 required="true" validator="email" />

 <field name="subject" type="text" required="true" />

 <field name="message" type="text"

 required="true" flags="area" />

 </form>

 <action name="sendEmail">

 <param name="receiver">playland@infopark.de</param>

 <param name="template">email.vm</param>

Portlets

Portal Manager – © 2011 Infopark AG 44/57

 <param name="senderField">email</param>

 <param name="subjectField">subject</param>

 </action>

</flow>

A form element may include any number of field elements. Each of them represents a field of the

form page concerned. field elements can have the following attributes:

• name: The name of the field which must be unique on the page.

• type: The field type. The permitted types are defined in the WEB-INF/flow.properties file:

• text: simple text

• select: selection

• multiselect: multiple selection

• file: a file to be uploaded

• boolean: a boolean value

• date: a date

• month: month

• required: specifies whether the field is obligatory.

• flags: a comma-separated list of display properties.

• value: a preset value for the text type

• validator: a test for the value. Permitted tests are defined in the WEB-INF/flow.properties

file.

• regex: a regular expression for testing the value of text fields

• error: the error which is output if the regex test fails, otherwise error errorInvalid.

The name and type attributes are obligatory. You can specify either the validator or regex

attribute, not both. For the select and multiselect types, the available values can be specified

by means of item elements in the field element. For select) and multiselect the preselected

value or values, respectively, can be defined by means of the default="true" attribute of the item

element concerned.

If the item element has a value attribute, its value is used as field value if the user has selected the

element. The contents of the element, on the other hand, serves as display value. If value has not

been specified, the localized contents of the item element is used as display value while the contents

itself is used as the actual field value.

The final action needs to be defined by means of an action element. Its obligatory name attribute

determines the action; the permitted names are again defined in the WEB-INF/flow.properties

file. As for the tests, the action references a Java class which implements the action. The arguments to

be passed to the Java code can be defined by means of param elements inside the action element.

Each param element needs to have a unique name which can be specified as the value of its name

attribute. The contents of such an element is the argument value.

Displaying the Forms with Velocity Templates

Each form page is displayed by means of a Velocity template. In the current context the following

variables for accessing dynamic content are available:

• $fields: all fields of the form page via their name

• $errors: the list of all the errors that occurred

Portlets

Portal Manager – © 2011 Infopark AG 45/57

• $text: localizations (see below)

• $page: the number of the current page, beginning with 1

• $pages: the total number of pages

• $action: the form URL

For displaying the fields, several macros are available, originating from the WEB-INF/templates/

flow/macros.vm file:

• #renderLabel: displays a localized field title

• #renderField: displays the fields in accordance with the type and the flags (see above)

• #renderButtons: displays a list of buttons

• #renderErrors: displays the errors that occurred

How the fields are displayed can be influenced by flags in the following way:

• area (text): multi-line text input

• password (text): invisible (hidden) text input

• sorted (select, multiselect): sort entries alphabetically

• menu (select, multiselect): selection from a drop-down menu

The following example template displays a contact form:

<form action="$action" method="post" class="contact">

 #renderErrors()

 <table cellpadding="0" cellspacing="0" border="0">

 <tr>

 <td class="contact">#renderLabel($fields.gender)

 <div>#renderSelectField($fields.gender)</div>

 </td>

 <td class="contact">#renderLabel($fields.lastName)

 #renderTextField($fields.lastName)

 </td>

 <td class="contact">#renderLabel($fields.firstName)

 #renderTextField($fields.firstName)

 </td>

 </tr>

 <tr>

 <td class="contact" colspan="3">

 #renderLabel($fields.email)

 #renderTextField($fields.email)

 </td>

 </tr>

 <tr>

 <td class="contact" colspan="3">

 #renderLabel($fields.subject)

 #renderTextField($fields.subject)

 </td>

 </tr>

 <tr>

 <td class="contact" colspan="3">

 #renderLabel($fields.message)

 #renderTextField($fields.message)

 </td>

 </tr>

 <tr>

 <td class="contact" colspan="3">

 #renderButtons(["Ok"])

 </td>

 </tr>

 </table>

</form>

Portlets

Portal Manager – © 2011 Infopark AG 46/57

Please also take a look at the description of the Velocity syntax.

Localisation

In the form definition folder the localization for field titles, buttons, errors, and other texts are stored.

You can access the localized strings inside templates by means of the text context variable. The

localizations are stored in the directory as a „Java resource bundle" named localizer. It consists of

one file for each language. This file is named localizer_Language.properties, with Language

standing for a two-character language code such as en or de.

Buttons are normally prefixed with button, errors have the prefix error, and field titles are prefixed

with the name of the corresponding field. Optionally, additional messages, for example for the action

result, can be added.

5.4.2 Usage

The portlet can be included in the content by means of the following code:

<npspm includePortlet="flow" instance="flowname" />

flowname stands for the name of the directory containing the form sequence definitions.

When the portlet is executed it displays the first form page inside the portlet. Switches are used for

navigating. Typically, these switches are displayed by means of #renderButtons. The meaning of the

following named switches is predefined:

• Cancel: aborts the form sequence, clears all data, and returns to the first page.

• Back: jumps to the previous page if it exists. Entered data is preserved.

All other switches have the function of Continue oder OK. If such a switch is used on the last form

page, the defined action is performed. If no error occurs during this action, the result is displayed by

means of the result template.

If a field or the action itself causes an error, the current page is not left but displayed again including

the errors. The errors should be displayed at a proper place on the page using the #renderErrors

macro.

Example: Sending E-mail Messages

As a typical use case, an action for sending the form data as an e-mail message has already been

implemented. The action sendEmail can be adapted to different requirements. For this, several

arguments are available in the action element (see the example definition above):

• receiver: the recipient or recipients of the message. If this argument is missing, the e-mail is sent

to the sender.

• template: the name of the e-mail template.

• sender /senderField: the sender or the field from which the sender is taken. Please note that the

sender must be accepted by the mail server!

• subject / subjectField: the subject or the field, respectively, from which the subject of the

message is taken.

Example: Sending E-Mail Messages and a Confirmation Message

http://velocity.apache.org/engine/devel/user-guide.html

Portlets

Portal Manager – © 2011 Infopark AG 47/57

In addition to the sendEmail action, sendEmailAndConfirmation has been implemented. This

action can be used to send a confirmation message in addition to the e-mail message itself.

In the action element, sendEmailAndConfirmation has the same parameters as sendEmail, plus

the following ones:

• confirmationReceiverField: the field from which the recipient of the confirmation message is

taken.

• confirmationTemplate: the name of the template used for the confirmation message.

• confirmationSubjectField: the field from which the subject of the confirmation message is

taken.

Typically, the #renderValue and (from version 6.7.2) #renderHtmlEscapedValue macros are used to

take over the field values into the template.

5.5 Search Portlet

By means of the search portlet, search forms and results lists can be integrated into a website.

Both the function and the layout of the search can be adapted to meet individual needs without

having to modify Java code. The portlet supports sending requests to the Content Management Server

as well as to the Search Engine Server. It uses the search engine configured in the searchEngine entry

of the pm.xml configuration file.

Each search is represented by an individual directory below the instance-specific web application

directory WEB-INF/templates/search.

5.5.1 Usage

The search portlet can be included in layout files in the following way:

<npspm includeportlet="/PM-PL/search" instance="dealer" language="de" />

The instance name, dealer, corresponds to the name of the directory containing the search definition.

language optionally lets you define the language to be used by the portlet. If it is not specified, the

language set in the browser is used.

5.5.2 Configuration

Definition of a Search

Any number of searches can be defined. Each of them is defined by means of two Velocity templates

located in the web application directory mentioned above. The view.vm file determines the layout of

the search form and the results list while config.vm determines the search query to be executed by

the portlet.

Since the portlet is capable of displaying itself in several languages, a localization file,

localizer_xy.properties, is required for each locale of the Verity search engine. In the file name

mentioned, xy stands for the language code concerned. In these files, named strings are defined in the

following form:

Portlets

Portal Manager – © 2011 Infopark AG 48/57

title: Dealer

buttonSearch: Search

errorNoResults: Your search query did not return any results.

Please note that the localizer files need to be UTF-8-encoded.

Structure of the config.vm Configuration File

After the search form generated by the portlet has been sent, the portlet loads and evaluates the

config.vm Velocity template to generate the search query from the data given in the input elements

of the form. The parameters from the search form are available in the template under their names.

The evaluation of the template yields an XML document the Search Server is able to process.

The portlet sends this document to the Search Server and receives as response an XML document

containing the search results to be displayed.

The XML document generated by the Velocity template is required to have the following structure:

<query>

 <condition>...</condition>

 <result-fields>...</result-fields>

 <sort>...</sort>

 <collections>...</collections>

 <page-size>...</page-size>

 <max-hits>...</max-hits>

 <min-score>...</min-score>

</query>

All elements except condition are optional. In the following config.vm example file, a search for

documents containing a search term is defined. Only documents without any access restrictions are

returned:

<query>

 <condition>

 <and>

 <vql-statement>

 <#MANY><#STEM>${searchText}

 </vql-statement>

 <vql-statement>

 <#MANY><#STEM>free <#IN>

 noPermissionLiveServerRead

 </vql-statement>

 </and>

 </condition>

 <result-fields>

 <field>title</field>

 <field>name</field>

 <field>visiblePath</field>

 <field>ip_abstract</field>

 </result-fields>

 <sort>

 <criterion>

 <field>pl_PLZ</field>

 <ascending/>

 </criterion>

 <criterion>

 <field>name</field>

 <ascending/>

 </criterion>

 </sort>

 <page-size>5</page-size>

 <collections>

 <collection>cm-contents-${language}</collection>

Portlets

Portal Manager – © 2011 Infopark AG 49/57

 </collections>

 <log>

 <context>search</context>

#if ($user.isLoggedIn())

 <login>${user.login}</login>

#end

 <query>${searchText}</query>

 </log>

</query>

In the following, the meaning of the elements of which the search query consists is explained:

• condition: This defines the search query. The condition may contain the following operators:

• and: this element combines the elements contained in it with a logical and.

• contains: searches files, whose field with name field contains the string value. Example:

<contains>

 <field>keywords</field>

 <value>service</value>

</contains>

• contains-match: searches files, where the wildcard pattern value matches the content of the

field named field. Valid wildcards are asterisk (*) and question mark (?).

• equals: searches files, where the field named field equals exactly the string value. Example:

<equals>

 <field>name</field>

 <value>mastertemplate</value>

</equals>

• or: combines the elements contained in it using or.

• starts-with: searches files, where the field with name field begins with the string value.

• vql-statement: contains the search query in the explicit Verity query language. For a detailed

explanation of the syntax, please refer to the Infopark Search Server Manual. Note that special

characters need to be specified as HTML entities, for example < as <.

• result-fields: This element specifies in its field subelements the fields of the resulting

documents to be added to the search results. This makes it possible to display the values of these

fields on the result pages.

• sort: Here, one or more criteria for sorting the search results can be specified. Each criterion

consists of a field name, field, whose contents is used for sorting, as well as optionally either

ascending or descending to define the sort order.

• page-size: By means of this element, the number of hits to be displayed on each result page can

be specified.

• collections: Specify here the collections to be searched. If this information is omitted, all

collecions are searched.

• log: Specify here the elements to be tracked. Permitted elements are context, login, and query.

context must be specified, otherwise tracking is disabled.

Please note that the fields to be searched and also to be returned by the search engine (see result-

fields, sort above) must have been defined in the Verity configuration prior to creating the

collection concerned (see the Infopark Search Cartridge documentation).

http://www.infopark.com/1200273/14-Search-Server
http://www.infopark.com/1200273/14-Search-Server

Portlets

Portal Manager – © 2011 Infopark AG 50/57

Structure of the view.vm Configuration File

This Velocity template serves to generate the HTML text of the search form and the results list.

In the template, you can use the following keywords to access objects in the Velocity context:

• $action: The action to use in the search form.

• $params: The list of search parameters used so far. Internal parameters (whose name begins with a

underscore character) do not show up in this list.

• $text: offers access to localized texts (originating from the localization files in the definition

directory).

• $locale: the current locale.

• $search: Tool with which URLs can be generated. The following methods are available:

• String getPageUrl(Page page): returns an URL for jumping to the specified page of the

results list.

• String getSearchUrl(String parameter, String value): returns an URL for performing

a search using the given parameter.

• String highlight(String word, String text, String prefix, String suffix):

encloses each occurrence of the specified word in text into the strings prefix and suffix ein.

• $result: allows accessing the results list by means of the following methods:

• int getHitCount(): returns the number of hits.

• List getPages(): returns the list of Page objects in the search result.

• Page getCurrentPage(): returns the Page object which represents the current page of the

results list.

The properties of the the objects listed above are described in the portlet's javadoc documentation.

Example (starting with the form, then comes the Velocity template):

<form method="get" action="$action">

 <input type="text" name="searchText" value="$!params.searchText"/>

 <input type="submit" name="_buttonSearch"

 value="$text.buttonSearch"/>

</form>

#if ($result)

 #if ($result.hitCount == 0)

 $text.errorNoResults

 #else

 #foreach ($item in $result.currentPage.hits)

 #set($path = $document.getUrl($item.visiblePath))

 $item.title

 #end

 #end

#end

Configuring Access to the Search Engine

The search engine is configured in the pm.xml file as a the searchEngine bean. Two implementations

are available, direct access via the Search Server, and access via the Content Management Server.

SesSearchEngine: For the live system search the search queries are sent directly to the Search Server

running on the live system:

Portlets

Portal Manager – © 2011 Infopark AG 51/57

<bean id="searchEngine"

 class="com.infopark.libs.search.ses.SesSearchEngine">

 <property name="host"><value>localhost</value></property>

 <property name="port"><value>3011</value></property>

</bean>

AdvancedCmSearchEngine: When searching via the Content Management Server, the editorial

system is searched. Der Content Management Server redirects the queries to the Search Server

associated with the editorial system. However, it adds to each hit the path of the CMS file found:

<bean id="searchEngine"

 class="com.infopark.libs.search.cm.AdvancedCmSearchEngine">

 <property name="host"><value>localhost</value></property>

 <property name="port"><value>3002</value></property>

 <property name="user"><value>root</value></property>

 <property name="tokenManager">

 <ref bean="tokenManager"/>

 </property>

</bean>

5.5.3 Example

The following example illustrates how a new search can be created in the portal included in the demo

content. The search term that was entered is to be found in the main content, the title, or the abstract,

i.e. in the fields named blob, title, and ip_abstract. On the result pages, the fields title and

ip_abstract are to be output. The abstract is to be displayed only if it contains text, i.e. if it is not

empty.

Preparing the Search Engine Indexes

The fields mentioned above can only be used after the configuration of the search engine on the live

server side has been extended so that the additional fields are available and filled-in when documents

are indexed.

For this, open the file belonging to the collection which is to be searched, located in the instance

concerned.

 instance/instanceName/config/vdk/styles/collectionName/style.ufl

Add the following fields:

Specify additional application-specific fields here in their own

data-table[s].

data-table: nps

{

 **** Existing fields

 **** New fields

 varwidth: ip_abstract dxa

 autoval: collection DBNAME

}

Stop the Search Engine Server:

Portlets

Portal Manager – © 2011 Infopark AG 52/57

./rc.npsd stop SES

For the changes to become effective, the collection needs to be created again and the documents need

to be reindexed. To do this, start the Search Server in single mode:

./SES -single

Now, perform the following steps for the collection concerned:

SES>deleteCollection collectionName

SES>createCollection collectionName

SES>exit

Start the Search Engine Server:

./rc.npsd start SES

Now, connect to the Content Management Server:

./client localhost 3001 root demo

Reindex all NPS files using the following command:

CM>indexAllObjects

CM>exit

Create the new Search

Change to the directory

/instance/instanceName/webapps/PM-PL/WEB-INF/templates/search

and make a copy of the existing directory nameTitle and name it bodySubjects. Then change to this

directory and edit the files named config.vm and view.vm.

In the file config.vm the search query is configured. For this purpose change the contents of the

condition element so that it contains only the following vql-statement element:

<vql-statement>

 ("${suche}" <#IN> blob) <#OR>

 (title <#SUBSTRING> "${suche}") <#OR>

 (ip_abstract <#SUBSTRING> "${suche}")

</vql-statement>

Please note that the serach query consists of several parts (one per field), all of which are combined

with OR. Since the main content (blob) is a document zone and not a field (like title and

ip_abstract), the operator IN, which searches document zones, is used for searching it. The

SUBSTRING operator, on the other hand, searches the contents of fields.

Portlets

Portal Manager – © 2011 Infopark AG 53/57

Since the search results are to include the contents of the ip_abstract field, it needs to be added to

the result-fields element:

<result-fields>

 <field>objId</field>

 <field>name</field>

 <field>title</field>

 <field>score</field>

 <field>visiblePath</field>

 <field>ip_abstract</field>

</result-fields>

Creating the Search and Results Page

The search and results page are created in the file view.vm. Its upper section defines the search form:

<form action="$action" method="post">

 <div>

 Ihre Suche <input type="text" name="suche"

 value="$!params.suche" />

 </div>

 <input type="submit" name="dialog.buttonOk"

 value="$text.buttonOk" />

</form>

The lower section of the file view.vm makes it possible to display the results after the user has

submitted the search form. All results are to be displayed as a list. For each hit, the (linked) title and

the abstract of the document is to be displayed:

 Verlinkter Titel

 ip_abstract

 ...

 ...

To achieve this display format, the following code is used:

#if ($result)

 #if ($result.hitCount == 0)

 <div>$text.noHits</div>

 #else

 <!-- Number of results -->

 <div>$text.hitCount $result.hitCount</div>

 <!-- Begin of results list generation -->

 #foreach ($item in $result.currentPage.hits)

 #set($path = $document.getUrl($item.visiblePath))

 #if ($path)#end

 $item.title

 #if ($path)#end

 #if ($item.ip_abstract)
$item.ip_abstract#end

 #end

 <!-- End of results list generation -->

 <!-- Create links to other results pages -->

 <div>

 #foreach ($page in $result.pages)

 #if ($page.isCurrent())

Portlets

Portal Manager – © 2011 Infopark AG 54/57

 $page.number

 #else

 $page.number

 #end

 #end

 </div>

 <div>$text.page $result.currentPage.number $text.pageOf

 $result.pages.size()

 </div>

 <!-- End of results pages overview -->

 #end

#end

In order to remove the first directory from the paths in the results list (so that the root folder is not

displayed), use the following code in the foreach loop:

Search for directory delimiter (slash)

#set(prefix $path.indexOf("/", 1))

Do not use $path to access the path, instead use:

$path.substring($prefix + 1)

Including the Portlet in a Web Page

To include the portlet in a web page, add the following line to a layout file used for generating the

pages to be displayed:

<npspm includePortlet="/PM-PL/search" instance="bodySubjects" />

The portlet is now displayed in the separate preview and can be used.

Clearing the Input Fields of the Search Form

The search portlet stores the values contained in its input fields. If, after a search, a website visitor

reenters the search page (the page containing the search portlet), the form contains the values that

were entered before.

Since this behavior is normally unwanted, you can have the portlet clear the input fields. For this, up to

version 6.5.0, add the reset=true parameter to the URL that links to the search page. Example:

Search

From version 6.5.1, add a link to the remote control portlet instead. Example.

<npspm includePortlet="/PM-PL/remoteControl" instance="search">

targetUrl=/search.html

emptySearch=true

emptySearchLinkText=Search

</npspm>

The linked text is configured in the portlet itself and reads "New Search". If you wish to be able to

specify the linked text in each call to the portlet, using the parameter emptySearchLinkText like in

the example above, replace in the webapps/PM-PL/WEB-INF/templates/remote/search/view.vm

template file the line

 $text.emptySearch

Portlets

Portal Manager – © 2011 Infopark AG 55/57

with the following code:

#if ($params.emptySearchLinkText)

 #set ($linkText = $params.emptySearchLinkText)

#else

 #set ($linkText = $text.emptySearch)

#end

 $linkText

5.6 Portlet for Displaying and Sorting a Table

This portlet displays a table and makes it possible to sort the table rows.

Using this portlet requires a separate licence.

5.6.1 Operation

The table rows can be sorted by clicking a column header in the portlet. This causes the rows to be

sorted alphabetically by the values in the clicked column. Another click on this column header reverses

the sort order. If more rows than the configured number of lines per page exist, links for browsing the

table are displayed.

5.6.2 Configuration

The layout of this portlet (and all other portlets as well) can be specified by means of a Velocity

template. This template is located in the PM-PL web application, in the /WEB-INF/templates/com/

infopark/portlet/gridview directory. The layout can be adapted as desired.

In order to display a table, include it as an XML element in the npspm element. To avoid conflicts with

editors, a CDATA section should be used as shown in the example below.

5.6.3 Usage

The portlet can be integrated into layout files according to the following example:

<npspm includePortlet="/PM-PL/gridview" ... ><![CDATA[

 <grid rowsPerPage="10">

 <row><cell>Titel 1</cell><cell>Titel 2</cell></row>

 <row><cell>1.1</cell><cell>1.2</cell></row>

 <row><cell>2.1</cell><cell>2.2</cell></row>

 <row><cell>3.1</cell><cell>3.2</cell></row>

 </grid>

]]></npspm>

You can optionally use the rowsPerPage attribute of the grid element to configure the number of

table rows to be displayed in the portlet.

5.7 Storing User-Specific Portlet Preferences

Portlets can store user-specific settings (used for personalization purposes, for example) in a number of

ways. Infopark Portal Manager offers three storage variants for such data:

Portlets

Portal Manager – © 2011 Infopark AG 56/57

• In RAM (MemoryPreferencesStorage): This is the fastest method. However, the stored data is

lost when the application server is restarted.

• In the file system (FilesystemPreferencesStorage): The settings are stored as Java preferences

in the home directory of the user who has started Trifork server. With many users or many portlets,

the storage capabilities may be insufficient. Under Linux, for example, a directory may not contain

more than 32.768 directories.

• In a database (DatabasePreferencesStorage) (from version 6.7.1): Storing the user data in a

database is the most flexible method. However, it increases the administrative effort required.

The storage method can be specified by means of a bean in the preferencesStorage property which

can be found in the pm.xml file of the portlet web application. Only one of these beans must be used.

Therefore, two beans are commented out in the following example.

<property name="preferencesStorage">

 <!-- Store in memory only. Prefs will not survive appserver restart -->

 <!-- bean class="com.infopark.pm.MemoryPreferencesStorage" /> -->

 <bean class="com.infopark.pm.FilesystemPreferencesStorage" />

 <!-- Store in database table. Configure a dataSource bean -->

 <!--

 <bean class="com.infopark.pm.DatabasePreferencesStorage">

 <property name="dataSource" ref="portletPrefsDataSource"/>

 <property name="tableName" value="portlet_prefs"/>

 <property name="portletColumn" value="portlet"/>

 <property name="loginColumn" value="login"/>

 <property name="keyColumn" value="key"/>

 <property name="indexColumn" value="idx"/>

 <property name="valueColumn" value="value"/>

 </bean>

 -->

</property>

No configuration is required for the beans used to store the user settings in RAM or in the file system.

The bean for storing the data in a database assumes that the data source exists and is accessible. The

database can be configured by means of the com.infopark.pm.DatabasePreferencesStorage

bean which has the following property elements.

• dataSource: Use the ref attribute to refer to a bean, for example portletPrefsDataSource,

which specifies and configures the class to be used for accessing the database. In this example, all

access is done via JDBC:

<bean id="portletPrefsDataSource"

 class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName">

 <value>jdbc/portletDB</value>

 </property>

</bean>

• tableName: The name of the database table.

• indexColumn: Name of the primary key column.

• keyColumn: Name of the column in which the name of the saved value is stored (the portlet and

user-specific parameter name).

• portletColumn: The name of the column in which the portlet ID is stored.

• loginColumn: The name of the column in which the user name is stored.

Portlets

Portal Manager – © 2011 Infopark AG 57/57

• valueColumn: The name of the column in which the parameter value is stored.

The database interface is only used by the News Portlet included in Infopark Portal Manager. To

use the interface for your own portlets in the way shown above, make sure that the following

prerequisites are met:

• Database is available: The database must have been set up and supplied with the database table

specified above. The values of all columns except indexColumn have the VARCHAR type. The values

of indexColumn have the INT type. The following database command creates such a table:

CREATE TABLE portlet_prefs (

 idx INT,

 key VARCHAR,

 login VARCHAR,

 portlet VARCHAR,

 value VARCHAR

)

• JDBC drivers have been installed: The JDBC driver for your database must have been installed in

Trifork server. You can upload the driver by means of the server console.

• Data source has been set up: In Trifork server, you require a dataSource and a

pooledDataSource to access your database via the JDBC driver.

After the database and access to it have been configured, you can store and retrieve user-specific

settings via the API of the bean, analogously to the news portlet.

5.8 Note on Developing Portlets

From version 6.0.4 the Portal Manager includes a Java API which is required for developing portlets.

The API can be found in the /share/doc/javadoc/portlet-api directory, the documentation of

the classes is located in the /share/doc/javadoc/pm directory. Please open the file index.html in

this directory and also take a look at the packet overview (overview).

In the installation directory, you can find in the examples/portlet directory a sample portlet web

application including a couple of sample portlets. This web application can be deployed to /PM-EX

using the supplied ant build file.

Each portlet web application of the Infopark Portal Manager includes a servlet with which the portlets

can be tested without embedding them into the content. The path of this servlet is /webapp/debug/,

with webapp standing for the web application, for example /PM-EX/debug/. It outputs links to the

portlets contained in the web application so that they can be tested by clicking them. From Version

6.5.1, this servlet is also available in the Portal Manager web application under /PM/debug/. Its

purpose is to test the WSRP functionality.

	Portal Manager
	Contents

	Preface
	System Requirements

	The Concept of the Portal Manager
	Requirements
	Restrictions

	Using the Portal Manager
	Installing and Configuring the Portal Manager
	Making WSDL files Available

	Portlets

